A comprehensive review on the applications of chemometrics in analytical chemistry
DOI:
https://doi.org/10.69857/joapr.v13i3.861Keywords:
Chemometrics, Data-driven Methodologies, Multivariate Analysis, Artificial Intelligence, Machine Learning in ChemometricsAbstract
Background: This article presents a review of the various applications of chemometrics in analytical chemistry. Chemometrics is essential to analytical chemistry because it provides sophisticated methods for extracting, analyzing, and interpreting chemical data. To maximize analytical procedures, enhance data reliability, and extract insights, this field combines statistical and mathematical techniques with chemical research. Chemometrics provides analytical chemists with the means to manage the massive datasets generated by contemporary analytical methods, such as spectroscopy and chromatography. Methodology: This review combines data from previous research articles that have elaborated and described the various applications of chemometrics in the analytical chemistry sector. Results and Discussion: The combination of chemometrics with artificial intelligence and machine learning offers more advanced analytical and predictive modelling possibilities. It is anticipated that these developments will transform analytical chemistry by enhancing researchers' ability to manage complex datasets and gain deeper insights from their investigations. This is especially important in industries where precise data interpretation is critical, such as pharmaceuticals, ecological surveillance, and food safety. Conclusion: Chemometrics is essential to contemporary analytical chemistry because it provides methods and instruments that enhance quality control, facilitate innovative research advancements, and improve data analysis capabilities. The accuracy and efficacy of chemical analyses are expected to continue to improve as this sector develops.
Downloads
References
Wold S. Chemometrics and Intelligent Laboratory Systems. Chemometrics and intelligent laboratory systems, 30, 109–15 (1995) https://doi.org/10.1016/0169-7439(95)00042-9.
Riu J, Giussani B. Analytical chemistry meets art: The transformative role of chemometrics in cultural heritage preservation. Chemometrics and Intelligent Laboratory Systems, 247, (2024) https://doi.org/10.1016/j.chemolab.2024.105095.
Santos MC, Nascimento PAM, Guedes WN, Pereira-Filho ER, Filletti ÉR, Pereira FMV. Chemometrics in analytical chemistry - An overview of applications from 2014 to 2018. Ecletica Quimica, 44, 11–25 (2019) https://doi.org/10.26850/1678-4618eqj.v44.2.11-25.
Parastar H, Tauler R. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists. Angew Chem Int Ed Engl, 61, e201801134 (2022) https://doi.org/10.1002/anie.201801134.
Harlina PW, Maritha V, Geng F, Nawaz A, Yuliana T, Subroto E, Dahlan HJ, Lembong E, Huda S. Comprehensive review on the application of omics analysis coupled with Chemometrics in gelatin authentication of food and pharmaceutical products. Food Chem X, 23, (2024) https://doi.org/10.1016/j.fochx.2024.101710.
Martynko E, Kirsanov D. Application of Chemometrics in Biosensing: A Brief Review. Biosensors (Basel), 10, (2020) https://doi.org/10.3390/bios10080100.
Kharbach M, Alaoui Mansouri M, Taabouz M, Yu H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods, 12, (2023) https://doi.org/10.3390/foods12142753.
Taylan O, Cebi N, Tahsin Yilmaz M, Sagdic O, Bakhsh AA. Detection of lard in butter using Raman spectroscopy combined with chemometrics. Food Chem, 332, (2020) https://doi.org/10.1016/j.foodchem.2020.127344.
Elhamdaoui O, El Orche A, Cheikh A, Mojemmi B, Nejjari R, Bouatia M. Development of Fast Analytical Method for the Detection and Quantification of Honey Adulteration Using Vibrational Spectroscopy and Chemometrics Tools. J Anal Methods Chem, 2020, (2020) https://doi.org/10.1155/2020/8816249.
Peris-Díaz MD, Krężel A. A guide to good practice in chemometric methods for vibrational spectroscopy, electrochemistry, and hyphenated mass spectrometry. TrAC - Trends in Analytical Chemistry, 135, (2021) https://doi.org/10.1016/j.trac.2020.116157.
Tortorella S, Cinti S. How Can Chemometrics Support the Development of Point of Need Devices? Anal Chem, 93, 2713–22 (2021) https://doi.org/10.1021/acs.analchem.0c04151.
James G, Witten D, Hastie T, Tibshirani R, Taylor J. Linear Model Selection and Regularization. 229–88 (2023) https://doi.org/10.1007/978-3-031-38747-0_6.
Rai AK, Khan S, Kumar A, Dubey BK, Lal RK, Tiwari A, Trivedi PK, Elliott CT, Ratnasekhar C. Comprehensive Metabolomic Fingerprinting Combined with Chemometrics Identifies Species- and Variety-Specific Variation of Medicinal Herbs: An Ocimum Study. Metabolites, 13, (2023) https://doi.org/10.3390/metabo13010122.
Moshari-Nasirkandi A, Iaccarino N, Romano F, Graziani G, Alirezalu A, Alipour H, Amato J. Chemometrics-based analysis of the phytochemical profile and antioxidant activity of Salvia species from Iran. Sci Rep, 14, (2024) https://doi.org/10.1038/s41598-024-68421-8.
Pollo BJ, Teixeira CA, Belinato JR, Furlan MF, Cunha IC de M, Vaz CR, Volpato GV, Augusto F. Chemometrics, Comprehensive Two-Dimensional gas chromatography and “omics” sciences: Basic tools and recent applications. TrAC - Trends in Analytical Chemistry, 134, (2021) https://doi.org/10.1016/j.trac.2020.116111
de Falco B, Grauso L, Fiore A, Bonanomi G, Lanzotti V. Metabolomics and chemometrics of seven aromatic plants: Carob, eucalyptus, laurel, mint, myrtle, rosemary and strawberry tree. Phytochemical Analysis, 33, 696–709 (2022) https://doi.org/10.1002/pca.3121.
Abraham EJ, Kellogg JJ. Chemometric-Guided Approaches for Profiling and Authenticating Botanical Materials. Front Nutr, 8, (2021) https://doi.org/10.3389/fnut.2021.780228.
Aleixandre-Tudo JL, Castello-Cogollos L, Aleixandre JL, Aleixandre-Benavent R. Chemometrics in food science and technology: A bibliometric study. Chemometrics and Intelligent Laboratory Systems, 222, (2022) https://doi.org/10.1016/j.chemolab.2022.104514.
González-Domínguez R, Sayago A, Fernández-Recamales Á. An Overview on the Application of Chemometrics Tools in Food Authenticity and Traceability. Foods, 11, (2022) https://doi.org/10.3390/foods11233940.
Farag MA, Sheashea M, Zhao C, Maamoun AA. UV Fingerprinting Approaches for Quality Control Analyses of Food and Functional Food Coupled to Chemometrics: A Comprehensive Analysis of Novel Trends and Applications. Foods, 11, (2022) https://doi.org/10.3390/foods11182867.
Andre CM, Soukoulis C. Food quality assessed by chemometrics. Foods, 9, (2020) https://doi.org/10.3390/foods9070897.
Pelissari EMR, Covre KV, do Rosario DKA, de São José JFB. Application of chemometrics to assess the influence of ultrasound and chemical sanitizers on vegetables: Impact on natural microbiota, Salmonella Enteritidis and physicochemical nutritional quality. LWT, 148, (2021) https://doi.org/10.1016/j.lwt.2021.111711.
Vasconi M, Tirloni E, Stella S, Coppola C, Lopez A, Bellagamba F, Bernardi C, Moretti VM. Comparison of Chemical Composition and Safety Issues in Fish Roe Products: Application of Chemometrics to Chemical Data. https://doi.org/10.3390/foods9040540.
Voccio R, Malegori C, Oliveri P, Branduani F, Arimondi M, Bernardi A, Luciano G, Cettolin M. Combining PLS-DA and SIMCA on NIR data for classifying raw materials for tyre industry: A hierarchical classification model. Chemometrics and Intelligent Laboratory Systems, 250, (2024) https://doi.org/10.1016/j.chemolab.2024.105150.
Fan Z, Jiawei Z, Jihao Z. Adulteration identification of astragalus polysaccharides by nir spectroscopy combined with simca and PLS-DA. INMATEH - Agricultural Engineering, 68, 827–34 (2022) https://doi.org/10.35633/inmateh-68-82.
Teixeira JLDP, Caramês ETDS, Baptista DP, Gigante ML, Pallone JAL. Adulteration Detection in Goat Dairy Beverage Through NIR Spectroscopy and DD-SIMCA. Food Anal Methods, 15, 783–91 (2022) https://doi.org/10.1007/s12161-021-02151-9.
De Angelis D, Summo C, Pasqualone A, Faccia M, Squeo G. Advancements in food authentication using soft independent modelling of class analogy (SIMCA): a review. Food Quality and Safety, (2024) https://doi.org/10.1093/fqsafe/fyae032.
Grassi S, Tarapoulouzi M, D’alessandro A, Agriopoulou S, Strani L, Varzakas T. How Chemometrics Can Fight Milk Adulteration. (2022) https://doi.org/10.3390/foods.
Squeo G, Cruz J, De Angelis D, Caponio F, Amigo JM. Considerations about the gap between research in near-infrared spectroscopy and official methods and recommendations of analysis in foods. Curr Opin Food Sci, 59, (2024) https://doi.org/10.1016/j.cofs.2024.101203.
Rajendran HK, Fakrudeen MAD, Chandrasekar R, Silvestri S, Sillanpää M, Padmanaban VC. A comprehensive review on analytical and equation derived multivariate chemometrics for the accurate interpretation of the degradation of aqueous contaminants. Environ Technol Innov, 28, (2022) https://doi.org/10.1016/j.eti.2022.102827.
Li Y, Shen Y, Yao C liang, Guo D an. Quality assessment of herbal medicines based on chemical fingerprints combined with chemometrics approach: A review. J Pharm Biomed Anal, 185, (2020) https://doi.org/10.1016/j.jpba.2020.113215.
Liu Z, Yang MQ, Zuo Y, Wang Y, Zhang J. Fraud Detection of Herbal Medicines Based on Modern Analytical Technologies Combine with Chemometrics Approach: A Review. Crit Rev Anal Chem, 52, 1606–23 (2022) https://doi.org/10.1080/10408347.2021.1905503.
Lucini L, Ganugi P, Gajdoš Kljusuri J, Mastinu A, Xia L, Qi L. Integrative quantitative and qualitative analysis for the quality evaluation and monitoring of Danshen medicines from different sources using HPLC-DAD and NIR combined with chemometrics. Front Plant Sci, 13, 1–16 (2022) https://doi.org/10.3389/fpls.2022.93285.
Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics, 15, (2023) https://doi.org/10.3390/pharmaceutics15071916.
Pantanowitz L, Hanna M, Pantanowitz J, Lennerz J, Henricks WH, Shen P, Quinn B, Bennet S, Rashidi HH. Regulatory Aspects of Artificial Intelligence and Machine Learning. Modern Pathology, 37, (2024) https://doi.org/10.1016/j.modpat.2024.100609.
Rebiai A, Seghir B Ben, Hemmami H, Zeghoud S, Amor I Ben, Kouadri I, Messaoudi M, Pasdaran A, Caruso G, Sharma S, Atanassova M, Pohl P. Quality Assessment of Medicinal Plants via Chemometric Exploration of Quantitative NMR Data: A Review. Compounds, 2, 163–81 (2022) https://doi.org/10.3390/compounds2020012.
Rehman A, Naz S, Razzak I. Leveraging Big Data Analytics in Healthcare Enhancement: Trends, Challenges and Opportunities. Academic medicine: journal of the As- sociation of American Medical Colleges, 1–24 (2020) https://doi.org/10.1007/s00530-020-00736-8.
Casian T, Nagy B, Kovács B, Galata DL, Hirsch E, Farkas A. Challenges and Opportunities of Implementing Data Fusion in Process Analytical Technology—A Review. Molecules, 27, (2022) https://doi.org/10.3390/molecules27154846.
Tayefi M, Ngo P, Chomutare T, Dalianis H, Salvi E, Budrionis A, Godtliebsen F. Challenges and opportunities beyond structured data in analysis of electronic health records. Wiley Interdiscip Rev Comput Stat, 13, (2021) https://doi.org/10.1002/wics.1549.
Nelly Tochi Nwosu. Reducing operational costs in healthcare through advanced BI tools and data integration. World Journal of Advanced Research and Reviews, 22, 1144–56 (2024) https://doi.org/10.30574/wjarr.2024.22.3.1774.
Liu Z, Yang MQ, Zuo Y, Wang Y, Zhang J. Fraud Detection of Herbal Medicines Based on Modern Analytical Technologies Combine with Chemometrics Approach: A Review. Crit Rev Anal Chem, 52, 1606–23 (2022) https://doi.org/10.1080/10408347.2021.1905503.
Dupont MF, Elbourne A, Cozzolino D, Chapman J, Truong VK, Crawford RJ, Latham K. Chemometrics for environmental monitoring: A review. Analytical Methods, 12, 4597–620 (2020) https://doi.org/10.1039/d0ay01389g.
Barra I, Kharbach M, Qannari EM, Hanafi M, Cherrah Y, Bouklouze A. Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression. Vib Spectrosc, 111, (2020) https://doi.org/10.1016/j.vibspec.2020.103157.
Wilcox TM, McKelvey KS, Young MK, Engkjer C, Lance RF, Lahr A, Eby LA, Schwartz MK. Parallel, targeted analysis of environmental samples via high-throughput quantitative PCR. Environmental DNA, 2, 544–53 (2020) https://doi.org/10.1002/edn3.80.
Barra I, Haefele SM, Sakrabani R, Kebede F. Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances–A review. TrAC - Trends in Analytical Chemistry, 135, (2021) https://doi.org/10.1016/j.trac.2020.116166.
Krzebietke S, Daszykowski M, Czarnik-Matusewicz H, Stanimirova I, Pieszczek L, Sienkiewicz S, Wierzbowska J. Monitoring the concentrations of Cd, Cu, Pb, Ni, Cr, Zn, Mn and Fe in cultivated Haplic Luvisol soils using near-infrared reflectance spectroscopy and chemometrics. Talanta, 251, (2023) https://doi.org/10.1016/j.talanta.2022.123749.
Athamena A, Gaagai A, Aouissi HA, Burlakovs J, Bencedira S, Zekker I, Krauklis AE. Chemometrics of the Environment: Hydrochemical Characterization of Groundwater in Lioua Plain (North Africa) Using Time Series and Multivariate Statistical Analysis. Sustainability (Switzerland), 15, (2023) https://doi.org/10.3390/su15010020.
Fuente-Ballesteros A, Ares AM, Bernal J. Paving the way towards green contaminant analysis: Strategies and considerations for sustainable analytical chemistry. Green Analytical Chemistry, 12, (2025) https://doi.org/10.1016/j.greeac.2025.100221.
Aboushady D, Samir L, Masoud A, Elshoura Y, Mohamed A, Hanafi RS, El Deeb S. Chemometric Approaches for Sustainable Pharmaceutical Analysis Using Liquid Chromatography. Chemistry (Easton), 7, 11 (2025) https://doi.org/10.3390/chemistry7010011.
Zhao X, Cheng K, Zhou W, Cao Y, Yang SH. Multivariate Statistical Analysis for the Detection of Air Pollution Episodes in Chemical Industry Parks. Int J Environ Res Public Health, 19, (2022) https://doi.org/10.3390/ijerph19127201.
Chapman J, Truong VK, Elbourne A, Gangadoo S, Cheeseman S, Rajapaksha P, Latham K, Crawford RJ, Cozzolino D. Combining Chemometrics and Sensors: Toward New Applications in Monitoring and Environmental Analysis. Chem Rev, 120, 6048–69 (2020) https://doi.org/10.1021/acs.chemrev.9b00616.
Reitz A, Hemric E, Hall KK. Evaluation of a multivariate analysis modeling approach identifying sources and patterns of nonpoint fecal pollution in a mixed use watershed. J Environ Manage, 277, (2021) https://doi.org/10.1016/j.jenvman.2020.111413.
Muniz DHF, Oliveira-Filho EC. Multivariate Statistical Analysis for Water Quality Assessment: A Review of Research Published between 2001 and 2020. Hydrology, 10, (2023) https://doi.org/10.3390/hydrology10100196.
Machado M, Reisen VA, Santos JM, Reis Junior NC, Frère S, Bondon P, Ispány M, Aranda Cotta HH. Use of multivariate time series techniques to estimate the impact of particulate matter on the perceived annoyance. Atmos Environ, 222, (2020) https://doi.org/10.1016/j.atmosenv.2019.117080.
Oliveira LG, Araújo KC, Barreto MC, Bastos MEPA, Lemos SG, Fragoso WD. Applications of chemometrics in oil spill studies. Microchemical Journal, 166, (2021) https://doi.org/10.1016/j.microc.2021.106216.
Martinez-Mayorga K, Madariaga-Mazon A, Medina-Franco JL, Maggiora G. The impact of chemoinformatics on drug discovery in the pharmaceutical industry. Expert Opin Drug Discov, 15, 293–306 (2020) https://doi.org/10.1080/17460441.2020.1696307.
Kalinowska K, Bystrzanowska M, Tobiszewski M. Chemometrics approaches to green analytical chemistry procedure development. Curr Opin Green Sustain Chem, 30, (2021) https://doi.org/10.1016/j.cogsc.2021.100498.
Cornejo-Báez AA, Peña-Rodríguez LM, Álvarez-Zapata R, Vázquez-Hernández M, Sánchez-Medina A. Chemometrics: a complementary tool to guide the isolation of pharmacologically active natural products. Drug Discov Today, 25, 27–37 (2020) https://doi.org/10.1016/j.drudis.2019.09.016.
Gullifa G, Barone L, Papa E, Giuffrida A, Materazzi S, Risoluti R. Portable NIR spectroscopy: the route to green analytical chemistry. Front Chem, 11, (2023) https://doi.org/10.3389/fchem.2023.1214825.
Zhu X, Li W, Wu R, Liu P, Hu X, Xu L, Xiong Z, Wen Y, Ai S. Rapid detection of chlorpyrifos pesticide residue in tea using surface-enhanced Raman spectroscopy combined with chemometrics. Spectrochim Acta A Mol Biomol Spectrosc, 250, (2021) https://doi.org/10.1016/j.saa.2020.119366.
Shikweni M, Tavengwa NT, Mokgehle TM. Characterization and chemometric based optimization of bioactive metabolites in Hypoxis hemerocallidea with the aid of UPLC-QqQ-MS/MS. Chemical Papers, 78, 2223–33 (2024) https://doi.org/10.1007/s11696-023-03232-1.
Narenderan ST, Meyyanathan SN, Karri VVSR, Babu B, Chintamaneni P. Chemometrics Assisted QuEChERS Extraction Method for the Residual Analysis of Organophosphate Insecticides: Application to Their Dissipation Kinetics in Open Field Ecosystem. Analytical Chemistry Letters, 10, 798–810 (2020) https://doi.org/10.1080/22297928.2021.1876575.
Jurjeva J, Koel M. Implementing greening into design in analytical chemistry. Talanta Open, 6, (2022) https://doi.org/10.1016/j.talo.2022.100136.
Joshi PB. Navigating with chemometrics and machine learning in chemistry. Artif Intell Rev, 56, 9089–114 (2023) https://doi.org/10.1007/s10462-023-10391-w.
dos Santos DP, Sena MM, Almeida MR, Mazali IO, Olivieri AC, Villa JEL. Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends. Anal Bioanal Chem, 415, 3945–66 (2023) https://doi.org/10.1007/s00216-023-04620-y.
Benjelloun M, Miyah Y, Evrendilek GA, Lalami AEO, Demir I, Atmaca B, Ssouni S, Lairini S, Bouslamti R. Synergistic effect of coupling ozonation/adsorption system for toxic dye efficient removal: chemometric optimization by Box–Behnken response surface methodology. Desalination Water Treat, 306, 220–35 (2023) https://doi.org/10.5004/dwt.2023.29821.
Zulkifli B, Fakri F, Odigie J, Nnabuife L, Isitua CC, Chiari W. Chemometric-empowered spectroscopic techniques in pharmaceutical fields: A bibliometric analysis and updated review. Narra X, 1, (2023) https://doi.org/10.52225/narrax.v1i1.80.
Olasupo SB, Uzairu A, Shallangwa G, Uba S. QSAR modeling, molecular docking and ADMET/pharmacokinetic studies: a chemometrics approach to search for novel inhibitors of norepinephrine transporter as potent antipsychotic drugs. Journal of the Iranian Chemical Society, 17, 1953–66 (2020) https://doi.org/10.1007/s13738-020-01902-5.
Passos JOS, dos Santos Alves MV, Morais CLM, Martin FL, Cavalcante AF, Lemos TMAM, Moura S, Freitas DLD, Mariz JVM, Carvalho JL, Lima KMG, Pegado R. Spectrochemical analysis in blood plasma combined with subsequent chemometrics for fibromyalgia detection. Sci Rep, 10, (2020) https://doi.org/10.1038/s41598-020-68781-x.
Martin FL, Dickinson AW, Saba T, Bongers T, Singh MN, Bury D. ATR-FTIR Spectroscopy with Chemometrics for Analysis of Saliva Samples Obtained in a Lung-Cancer-Screening Programme: Application of Swabs as a Paradigm for High Throughput in a Clinical Setting. J Pers Med, 13, (2023) https://doi.org/10.3390/jpm13071039.
Elsonbaty A, Serag A, Abdulwahab S, Hassan WS, Eissa MS. Analysis of quinary therapy targeting multiple cardiovascular diseases using UV spectrophotometry and chemometric tools. Spectrochim Acta A Mol Biomol Spectrosc, 238, (2020) https://doi.org/10.1016/j.saa.2020.118415.
Calvo-Gomez O, Calvo H, Cedillo-Barrón L, Vivanco-Cid H, Alvarado-Orozco JM, Fernandez-Benavides DA, Arriaga-Pizano L, Ferat-Osorio E, Anda-Garay JC, López-Macias C, López MG. Potential of ATR-FTIR-Chemometrics in Covid-19: Disease Recognition. ACS Omega, 7, 30756–67 (2022) https://doi.org/10.1021/acsomega.2c01374.
Pushpa SR, Sukumaran RK, Savithri S. Robustness of FTIR-Based Ultrarapid COVID-19 Diagnosis Using PLS-DA. ACS Omega, 7, 47357–71 (2022) https://doi.org/10.1021/acsomega.2c06786.
Boccard J, Schvartz D, Codesido S, Hanafi M, Gagnebin Y, Ponte B, Jourdan F, Rudaz S. Gaining Insights Into Metabolic Networks Using Chemometrics and Bioinformatics: Chronic Kidney Disease as a Clinical Model. Front Mol Biosci, 8, (2021) https://doi.org/10.3389/fmolb.2021.682559.
Senger RS, Sayed Issa A, Agnor B, Talty J, Hollis A, Robertson JL. Disease-Associated Multimolecular Signature in the Urine of Patients with Lyme Disease Detected Using Raman Spectroscopy and Chemometrics. Appl Spectrosc, 76, 284–99 (2022) https://doi.org/10.1177/00037028211061769.
Risoluti R, Caprari P, Gullifa G, Massimi S, Maffei L, Sorrentino F, Carcassi E, Materazzi S. An Innovative Multilevel Test for Hemoglobinopathies: TGA/Chemometrics Simultaneously Identifies and Classifies Sickle Cell Disease From Thalassemia. Front Mol Biosci, 7, (2020) https://doi.org/10.3389/fmolb.2020.00141.
Cano-Trujillo C, García-Ruiz C, Ortega-Ojeda FE, Romolo F, Montalvo G. Forensic analysis of biological fluid stains on substrates by spectroscopic approaches and chemometrics: A review. Anal Chim Acta, 1282, (2023) https://doi.org/10.1016/j.aca.2023.341841.
Singh S, Shakeel H, Sharma R. Overview of chemometrics in forensic toxicology. Egypt J Forensic Sci, 13, (2023) https://doi.org/10.1186/s41935-023-00371-0.
Huhtala S, Nordgaard A, Ahrens B, Alberink I, Korpinsalo T, Bovens M. Chemometrics in Forensic Chemistry – Part III: Quality assessment and interpretation of chemometric output. Forensic Sci Int, 348, (2023) https://doi.org/10.1016/j.forsciint.2023.111612.
Zhang J, Jiang H, Duan B, Liu F. A rapid and nondestructive approach for forensic identification of cigarette inner liner papers using shift-excitation Raman difference spectroscopy and chemometrics. J Forensic Sci, 66, 2180–9 (2021) https://doi.org/10.1111/1556-4029.14798.
Lavine BK. Chemometrics in forensic science. J Chemom, 35, (2021) https://doi.org/10.1002/cem.3322.
Takamura A, Ozawa T. Recent Advances of Vibrational Spectroscopy and Chemometrics for Forensic Biological Analysis. Analyst, 1–35 (2021) https://doi.org/10.1039/D1AN01637G.
Eliaerts J, Meert N, Dardenne P, Baeten V, Pierna JAF, van Durme F, de Wael K, Samyn N. Comparison of spectroscopic techniques combined with chemometrics for cocaine powder analysis. J Anal Toxicol, 44, 851–60 (2020) https://doi.org/10.1093/jat/bkaa101.
Sauzier G, Van Bronswijk W, Lewis SW. Chemometrics in Forensic Science: Approaches and Applications. Forensic Chem, 16–47 (2022) https://doi.org/10.1039/D1AN00082A.
Pfeiffer P, Filzmoser P. Robust statistical methods for high-dimensional data, with applications in tribology. Anal Chim Acta, 1279, (2023) https://doi.org/10.1016/j.aca.2023.341762.
Merone GM, Tartaglia A, Locatelli M, D’Ovidio C, Rosato E, de Grazia U, Santavenere F, Rossi S, Savini F. Analytical Chemistry in the 21st Century: Challenges, Solutions, and Future Perspectives of Complex Matrices Quantitative Analyses in Biological/Clinical Field. Analytica, 1, 44–59 (2020) https://doi.org/10.3390/analytica1010006.
Wang J. Biostatistical Challenges in High-Dimensional Data Analysis: Strategies and Innovations. Computational Molecular Biology, (2024) https://doi.org/10.5376/cmb.2024.14.0019.
Auddy A, Xia D, Yuan M. Tensor Methods in High Dimensional Data Analysis: Opportunities and Challenges. A Journal of the IMA, 1–30 (2024) https://doi.org/10.48550/arXiv.2405.18412.
Mishra P, Roger JM, Jouan-Rimbaud-Bouveresse D, Biancolillo A, Marini F, Nordon A, Rutledge DN. Recent trends in multi-block data analysis in chemometrics for multi-source data integration. TrAC - Trends in Analytical Chemistry, 137, (2021) https://doi.org/10.1016/j.trac.2021.116206.
Biancolillo A, D’Archivio AA, Marini F, Vitale R. Novel Applications of Chemometrics in Analytical Chemistry and Chemical Process Industry. Frontiers (Boulder), 6–41 (2022) https://doi.org/10.3389/978-2-88976-297-2.
Bǎrbulescu A, Barbe L. Challenges and Opportunities in the Application of Chemometrics in the Pharmaceutical and Food Science Industries. J Chem, 2022, (2022) https://doi.org/10.1155/2022/9823497.
Caratti A, Squara S, Bicchi C, Liberto E, Vincenti M, Reichenbach SE, Tao Q, Geschwender D, Alladio E, Cordero C. Boosting comprehensive two-dimensional chromatography with artificial intelligence: Application to food-omics. TrAC - Trends in Analytical Chemistry, 174, (2024) https://doi.org/10.1016/j.trac.2024.117669.
Ayres LB, Gomez FJV, Linton JR, Silva MF, Garcia CD. Taking the leap between analytical chemistry and artificial intelligence: A tutorial review. Anal Chim Acta, 1161, (2021) https://doi.org/10.1016/j.aca.2021.338403.
Jia W, Georgouli K, Martinez-Del Rincon J, Koidis A. Challenges in the Use of AI-Driven Non-Destructive Spectroscopic Tools for Rapid Food Analysis. Foods, 13, (2024) https://doi.org/10.3390/foods13060846.
Massei A, Cavallini N, Savorani F, Falco N, Fissore D. Exploring NIR spectroscopy data: A practical chemometric tutorial for analyzing freeze-dried pharmaceutical formulations. Chemometrics and Intelligent Laboratory Systems, 257, (2025) https://doi.org/10.1016/j.chemolab.2024.105291.

Published
How to Cite
Issue
Section
Copyright (c) 2025 Projesh Saha, Bibhas Pandit, Soma Pramanik, Bhupendra Shrestha

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.