Harnessing hydrogen-bonding: advancements and applications in pharmaceutical co-crystallization

Authors

  • Preeti Devi Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak-124001, Haryana, India
  • Sonali Kakkar Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak-124001, Haryana, India
  • Vikas Budhwar Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak-124001, Haryana, India
  • Manjusha Choudhary Department of Pharmacology, Institute of Pharmaceutical Sciences, Kurukshetra-136119, Haryana, India
  • Vikas Jogpal Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram- 122103, Haryana, India

DOI:

https://doi.org/10.69857/joapr.v13i3.554

Keywords:

Crystal engineering, Supramolecular synthone, CSD, Hydrogen bonds, DFT

Abstract

Background: In the context of supramolecular chemistry, the formation of solid-state structures that exhibit predictable form and function through the use of intermolecular interactions is known as crystal engineering. In crystal engineering, the hydrogen bonds provide a directional and strong interaction between co-formers, helping to create a stable and well-defined crystalline lattice. The formation of hydrogen bonds can modify key properties of a co-crystal, such as solubility, melting point, and mechanical properties, which are valuable in pharmaceutical applications to improve drug efficacy. Fexofenadine co-crystals have been shown to significantly enhance solubility, achieving an 11-fold increase in water and a 2.47-fold increase in hydrochloric acid solutions. Objective: The review primarily focuses on the process of recognizing molecules and forming complex assemblies that are controlled via non-covalent interactions. Methodology: Various strategies, including hydrogen bond-based co-crystal design, are discussed and elaborated upon in this review. Result and Discussion: Reliable tools for developing supramolecular architectures can be obtained by complementarily combining hydrogen bonds with the understanding of robust supramolecular synthons. In addition to bringing different molecules together, these strong supramolecular synthons play a significant role in co-crystallization by adding dimensionality and a degree of directionality to the three-dimensional solid structures. Conclusion: Accurately predicting co-crystal synthesis requires a deep understanding of supramolecular interactions and a carefully selected library of co-formers with functional groups that complement those of the target compound.

Downloads

Download data is not yet available.

References

Haque A, Alenezi KM, Khan MS, Wong WY, Raithby PR. Non-covalent interactions (NCIs) in π-conjugated functional materials: advances and perspectives. Chem. Soc. Rev., 52(2), 454–72 (2023) https://doi.org/10.1039/D2CS00826A .

Ayinla RT, Shiri M, Song B, Gangishetty M, Wang K. The pivotal role of non-covalent interactions in single-molecule charge transport. Mater. Chem. Front., 7(17), 3524–42 (2023) https://doi.org/10.1039/D3QM00210A .

Kavanagh ON, Croker DM, Walker GM, Zaworotko MJ. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov. Today., 24(3), 796–804 (2019) https://doi.org/10.1016/j.drudis.2018.11.023.

Braga D, Casali L, Grepioni F. The relevance of crystal forms in the pharmaceutical field: sword of damocles or innovation tools?. International Journal of Molecular Sciences, 23(16), 9013(2022) https://doi.org/10.3390/ijms23169013.

Jin S, Sanii R, Song BQ, Zaworotko MJ. Crystal engineering of ionic co-crystals sustained by the phenol–phenolate supramolecular heterosynthon. Cryst. Growth Des., 22(7), 4582–91 (2022) https://doi.org/10.1021/acs.cgd.2c00471.

Rath BB, Vittal JJ. Photoreactive crystals exhibiting [2+ 2] photocycloaddition reaction and dynamic effects. Accounts of Chemical Research, 55(10), 1445-55 (2022) https://doi.org/10.1021/acs.accounts.2c00107

Huang F. Construction of supramolecular polymers based on host–guest recognition. Chin. J. Chem., 38(12), 1473–9(2020) https://doi.org/10.1002/cjoc.202000314.

Nasri F. A review of the thermodynamics of complexation of crown ethers with metal ion. J. Adv. Environ. Health Res.,10(4), 263–72(2022) https://doi.org/10.32598/JAEHR.10.4.1218.

Hasija A, Chopra D. Potential and challenges of engineering mechanically flexible molecular crystals. Cryst. Eng. Comm., 23(34), 5711–30(2021) https://doi.org/10.1039/D1CE00173.

Leng F, Robeyns K, Leyssens T. Urea as a co-crystal former—study of 3 urea-based pharmaceutical co-crystals. Pharmaceutics, 13(5), 671(2021) https://doi.org/10.3390/pharmaceutics13050671.

Nugrahani I, Parwati RD. Challenges and progress in nonsteroidal anti-inflammatory drugs co-crystal development. Molecules., 26(14), 4185(2021) https://doi.org/10.3390/molecules26144185.

Rajendran MA, Allada R, Sajid SS. Co-crystals for generic pharmaceuticals: an outlook on solid oral dosage formulations. Recent Adv. Drug Deliv. Formul., 15(1), 15–36 (2021) https://doi.org/10.2174/2667387815666210203151209.

Kumar Bandaru R, Rout SR, Kenguva G, Gorain B, Alhakamy NA, Kesharwani P, Dandela R. Recent advances in pharmaceutical co-crystals: from bench to market. Front.in Pharmacol., 12, 780582 (2021) https://doi.org/10.3389/fphar.2021.780582.

Wang Y, Lv J, Gao P, Ma Y. Crystal structure prediction via efficient sampling of the potential energy surface. Acc. Chem. Res., 55(15), 2068–76 (2022) https://doi.org/10.1021/acs.accounts.2c00243.

Dudek MK, Drużbicki K. Along the road to crystal structure prediction (CSP) of pharmaceutical-like molecules. Cryst Eng Comm., 24(9), 1665–78 (2022) https://doi.org/10.1039/D1CE01564H.

Zhao M, Xia Y. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nature Reviews Materials, 5(6), 440-59 (2020) https://doi.org/10.1038/s41578-020-0183-3.

Naumov P, Karothu DP, Ahmed E, Catalano L, Commins P, Mahmoud Halabi J, Al-Handawi MB, Li L. The rise of the dynamic crystals. Journal of the American Chemical Society, 142(31), 13256-72 (2020) doi:10.1021/jacs.0c05440

Zheng J, Suwardi A, Wong CJ, Loh XJ, Li Z. Halogen bonding regulated functional nanomaterials. Nanoscale Adv., 3(22), 6342–57 (2021) https://doi.org/10.1039/D1NA00485A .

Wang DX, Wang MX. Exploring anion−π interactions and their applications in supramolecular chemistry. Acc. Chem. Res., 53(7), 1364–80 (2020) https://doi.org/10.1021/acs.accounts.0c00243

Ge M, Wang Y, Zhu J, Wu B, Xu D, Yao J. Low-frequency vibrational spectroscopy characteristic of pharmaceutical carbamazepine co-crystals with nicotinamide and saccharin. Sensors., 22(11), 4053 (2022) https://doi.org/10.3390/s22114053.

Wang L, Li S, Xu X, Xu X, Wang Q, Li D, Zhang H. Drug-drug co-crystals of theophylline with quercetin. J. Drug Deliv. Sci. Technol., 70, 103228 (2022) https://doi.org/10.1016/j.jddst.2022.103228.

Hawes CS. Co-ordination sphere hydrogen-binding as a structural element in metal–organic frameworks. Dalton Trans., 50(18), 6034–49 (2021) https://doi.org/10.1039/D1DT00675D.

Nascimento AL, Fernandes RP, Charpentier MD, ter Horst JH, Caires FJ, Chorilli M. Co-crystals of non-steroidal anti-inflammatory drugs (NSAIDs): insight toward formation, methods, and drug enhancement. Particuology., 58, 227–41 (2021) https://doi.org/10.1016/j.partic.2021.03.015.

Sidwadkar PH, Salunkhe NH, Mali KK, Metkari VB, Bidye DP. Nicotinamide-based agglomerates of ibuprofen: formulation, solid state characterization and evaluation of tableting performance with in-silico investigation. Future J. Pharm. Sci., 9(1), 70 (2023) https://doi.org/10.1186/s43094-023-00521-0.

Chaudhari KR, Savjani JK, Savjani KT, Shah H. Improved pharmaceutical properties of ritonavir through co-crystallization approach with liquid-assisted grinding method. Drug Dev. Ind. Pharm., 47(10), 1633–42 (2021) https://doi.org/10.1080/03639045.2022.2042553.

Bürgi HB. The Cambridge Structural Database and structural dynamics. Struct. Dyn., 11(2), (2024) https://doi.org/10.1063/4.0000244.

Karas LJ, Wu CH, Das R, Wu JI. Hydrogen bond design principles. WIREs Comput. Mol. Sci., 10(6), 1477 (2020) https://doi.org/10.1002/wcms.1477.

Li Z, Kang W, Yang H, Zhou B, Jiang H, Liu D, Jia H, Wang J. Advances of supramolecular interaction systems for improved oil recovery (IOR). Adv. Colloid Interface Sci., 301, 102617 (2022) https://doi.org/10.1016/j.cis.2022.102617.

Grabowski SJ. Hydrogen bond types which do not fit accepted definitions. Chem. Commun., 60(49), 6239–55 (2024) https://doi.org/10.1039/D4CC01769B.

Chethan BS, Lokanath NK. Study of the crystal structure, hydrogen-binding and noncovalent interactions of novel co-crystal by systematic computational search approach. J. Mol. Struct., 1251, 131936 (2022) http://dx.doi.org/10.1016/j.molstruc.2021.131936.

Constable EC. Through a glass darkly—some thoughts on symmetry and chemistry. Symmetry., 13(10), 1891 (2021) https://doi.org/10.3390/sym13101891.

Derewenda ZS. On the centennials of the discoveries of the hydrogen bond and the structure of the water molecule: the short life and work of Eustace Jean Cuy. Acta Crystallogr. A., 77(5), 362–78 (2021) https://doi.org/10.1107/S2053273321006987.

Peluso P, Chankvetadze B. Recognition in the domain of molecular chirality: from noncovalent interactions to separation of enantiomers. Chem. Rev., 122(16), 13235–400 (2022) doi: https://doi.org/10.1021/acs.chemrev.1c00846.

Fabbrizzi L. Beyond the Molecule: Intermolecular Forces from Gas Liquefaction to X− H⋅⋅⋅ π Hydrogen Bonds. Chem Plus Chem., 87(1), 202100243 (2022) https://doi.org/10.1002/cplu.202100243.

Small H. Bayesian history of science: The case of Watson and Crick and the structure of DNA. Quantitative Science Studies, 4(1), 209-28 (2023) https://doi.org/10.1162/qss_a_00233.

Miserez A, Yu J, Mohammadi P. Protein-based biological materials: molecular design and artificial production. Chemical reviews, 123(5), 2049-111(2023) https://doi.org/10.1021/acs.chemrev.1c00846.

Yang X, Yuan D, Hou J, Sedgwick AC, Xu S, James TD, Wang L. Organic/inorganic supramolecular nano-systems based on host/guest interactions. Coord. Chem. Rev., 428, 213609 (2021) https://doi.org/10.1016/j.ccr.2020.213609.

Dalal V, Golemi-Kotra D, Kumar P. Quantum mechanics/molecular mechanics studies on the catalytic mechanism of a novel esterase (FmtA) of Staphylococcus aureus. J. Chem. Inf. Model., 62(10), 2409–20 (2022) https://doi.org/10.1021/acs.jcim.2c00057.

Lv P, Lu X, Wang L, Feng W. Nanocellulose‐based functional materials: from chiral photonics to soft actuator and energy storage. Adv. Funct. Mater., 31(45), 2104991 (2021) https://doi.org/10.1002/adfm.202104991.

Chen G, Tong L, Huang S, Huang S, Zhu F, Ouyang G. Hydrogen bonded organic framework biomimetic entrapment allowing non-native biocatalytic activity in enzyme. Nat. Commun., 13(1), 4816 (2022) https://doi.org/10.1038/s41467-022-32454-2.

Yuan Q, Chen J, Shi C, Shi X, Sun C, Jiang B. Advances in self‐healing perovskite solar cells enabled by dynamic polymer bonds. Macromol. Rapid Commun., 46(1), 2400630 (2024) https://doi.org/10.1002/marc.202400630.

García EJ, Bahamon D, Vega LF. Systematic search of suitable metal–organic frameworks for thermal energy-storage applications with low global warming potential refrigerants. ACS Sustainable Chemistry & Engineering, 9(8), 3157-71 (2021) https://doi.org/10.1021/acssuschemeng.0c07797.

Goswami M, Arunan E. Spectroscopic determination of hydrogen bond energies. Spectrosc. Comput. Hydrogen‐Bonded Syst., 293–343 (2023) https://doi.org/10.1002/9783527834914.ch11.

Varadwaj PR, Varadwaj A, Marques HM, Yamashita K. Significance of hydrogen bonding and other noncovalent interactions in determining octahedral tilting in the CH3NH3PbI3 hybrid organic-inorganic halide perovskite solar cell semiconductor. Scientific reports, 9(1), 50(2019) https://doi.org/10.1038/s41598-018-36218-1.

Pramanik S, Chopra D. Unravelling the importance of H bonds, σ–hole and π–hole-directed intermolecular interactions in nature. J. Indian Inst. Sci., 100(1), 43–59 (2020) https://doi.org/10.1007/s41745-019-00144-6.

Fick RJ, Liu AY, Nussbaumer F, Kreutz C, Rangadurai A, Xu Y, Sommer RD, Shi H, Scheiner S, Stelling AL. Probing the hydrogen-binding environment of individual bases in DNA duplexes with isotope-edited infrared spectroscopy. J. Phys. Chem. B., 125(28), 7613–27 (2021) https://doi.org/10.1021/acs.jpcb.1c01351.

Muthukumar J, Kandukuri VA, Chidambaram R. A critical review on various treatment, conversion, and disposal approaches of commonly used polystyrene. Polym. Bull., 81(4), 2819–45 (2024) https://doi.org/10.1007/s00289-023-04851-0.

Muthukumar J, Kandukuri VA, Chidambaram R. A critical review on various treatment, conversion, and disposal approaches of commonly used polystyrene. Polymer Bulletin, 81(4), 2819-45(2024) https://doi.org/10.1007/s00289-023-04851-0.

Bowskill DH, Sugden IJ, Konstantinopoulos S, Adjiman CS, Pantelides CC. Crystal structure prediction methods for organic molecules: state of the art. Annu. Rev. Chem. Biomol. Eng., 12(1), 593–623 (2021) https://doi.org/10.1146/annurev-chembioeng-060718-030256.

Prasad D, Mitra N, Deb K. Hydrogen and metal–ligand bonds in swelling of smectite clay minerals. J. Phys. Chem. C., 127(42), 20823–37 (2023) https://doi.org/10.1021/acs.jpcc.3c02916.

Echeverría J, Alvarez S. The borderless world of chemical bonding across the van der Waals crust and the valence region. Chemical Science, 14(42),11647-88(2023) https://doi.org/10.1039/D3SC02238B.

Hu C, Zhang F, Fan H. Evaluation of drug dissolution rate in co-amorphous and co-crystal binary drug delivery systems by thermodynamic and kinetic methods. AAPS Pharm Sci Tech., 22, 1–9 (2021) https://doi.org/10.1208/s12249-020-01864-0.

Verma P, Srivastava A, Srivastava K, Tandon P, Shimpi MR. Molecular structure, spectral investigations, hydrogen-binding interactions and reactivity–property relationship of caffeine–citric acid co-crystal by experimental and DFT approach. Front. Chem., 9, 708538 (2021) https://doi.org/10.3389/fchem.2021.708538.

Nascimento AL, Fernandes RP, Charpentier MD, ter Horst JH, Caires FJ, Chorilli M. Co-crystals of non-steroidal anti-inflammatory drugs (NSAIDs): insight toward formation, methods, and drug enhancement. Particuology., 58, 227–41 (2021) https://doi.org/10.1016/j.partic.2021.03.015.

Heng W, He X, Song Y, Han J, Pang Z, Qian S, Zhang J, Gao Y, Wei Y. Insights into cocrystallization and coamorphization engineering techniques in the delivery of traditional Chinese medicine: formation mechanism, solid-state characterization, and improved pharmaceutical properties. Crystal Growth & Design, 22(8), 5110-34(2022) https://doi.org/10.1021/acs.cgd.1c01352.

Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-based supramolecular systems chemistry. Chem. Rev., 121(22), 13869–914 (2021) https://doi.org/10.1021/acs.chemrev.1c00089.

Taylor R, Wood PA. A million crystal structures: The whole is greater than the sum of its parts. Chemical reviews, 119(16), 9427-77(2019) https://doi.org/10.1021/acs.chemrev.9b00155.

Hursthouse MB, Hughes DS, Gelbrich T, Threlfall TL. Describing hydrogen bonded structures; topology graphs, nodal symbols and connectivity tables, exemplified by five polymorphs of each of sulfathiazole and sulfapyridine. Chem. Cent. J., 1–5 (2022) https://doi.org/10.1186/s13065-014-0076-x.

Li XZ, Liang YL, Zhou LP, Cai LX, Zhu QY, Wang Z, Guo XQ, Yan DN, Hu SJ, Li SC, Wu SY. Coordination‐Assembled Metal–Organic Macrocycles and Cages. Advanced Structural Chemistry: Tailor Made, Properties and Applications of Inorganic Materials, 1, 35-80(2021) https://doi.org/10.1002/9783527831753.ch2b.

Xing C, Liu B, Liu H, Zhang L, Xu H, Tan Y. Topological characterization and typical topologies of disruption aggregates in asphalt mixture. J. Mater. Civ. Eng., 36(7), 04024158 (2024) https://doi.org/10.1061/JMCEE7.MTENG-17276.

Sabirov DS, Ori O, Tukhbatullina AA, Shepelevich IS. Covalently bonded fullerene nano-aggregates (C60) n: Digitalizing their energy–topology–symmetry. Symmetry, 13(10), 1899(2021) https://doi.org/10.3390/sym13101899.

Puniya RR, Takhar P, Kalita T, Kalita DJ, Singh D. Design and development of hydrogen bonded molecular assemblies based on pyromellitic diimide tethered carboxylic acids as optical materials. Mol. Syst. Des. Eng., 8(7), 929–41 (2023) https://doi.org/10.1039/D2ME00266C.

Zou W, Monterroza AM, Yao Y, Millik SC, Cencer MM, Rebello NJ, Beech HK, Morris MA, Lin TS, Castano CS, Kalow JA. Extending Big SMILES to non-covalent bonds in supramolecular polymer assemblies. Chem. Sci., 13(41), 12045–55 (2022) https://doi.org/10.1039/D2SC02257E.

Sıdır İ, Gülseven Sıdır Y, Gobi S, Berber H, Fausto R. Structural relevance of intramolecular hydrogen-binding in ortho-hydroxyaryl Schiff bases: the case of 3-(5-bromo-2-hydroxybenzylideneamino)phenol. Molecules., 26(9), 2814 (2021) https://doi.org/10.3390/molecules26092814.

Khan S, Zahoor M, Rahman MU, Gul Z. Co-crystals; basic concepts, properties and formation strategies. Z. Phys. Chem. 237(3), 273–332 (2023) https://doi.org/10.1515/zpch-2022-0175.

Tupe SA, Khandagale SP, Jadhav AB. Pharmaceutical Cocrystals: An Emerging Approach to Modulate Physicochemical Properties of Active Pharmaceutical Ingredients. Journal of Drug Delivery & Therapeutics, 13(4), (2023) https://doi.org.10.22270/jddt.v13i4.6016.

Chen H, Fraser Stoddart J. From molecular to supramolecular electronics. Nat. Rev. Mater., 6(9), 804–28 (2021) https://doi.org/10.1038/s41578-021-00302-2.

Moghadasnia MP, Eckstein BJ, Martin HR, Paredes JU, McGuirk CM. Toward the next generation of permanently porous materials: halogen-bonded organic frameworks. Cryst. Growth Des., 24(6), 2304–21(2024) https://doi.org/10.1021/acs.cgd.3c01427.

Peng HQ, Zhu W, Guo WJ, Li Q, Ma S, Bucher C, Liu B, Ji X, Huang F, Sessler JL. Supramolecular polymers: recent advances based on the types of underlying interactions. Prog. Polym. Sci., 137,101635 (2023) https://doi.org/10.1016/j.progpolymsci.2022.101635.

Garg U, Azim Y, Alam M, Kar A, Pradeep CP. Extensive analyses on expanding the scope of acid–aminopyrimidine synthons for the design of molecular solids. Crystal Growth & Design, 22(7), 4316-31(2022) https://doi.org/10.1021/acs.cgd.2c00293.

Khan S, Zahoor M, Rahman MU, Gul Z. Cocrystals; basic concepts, properties and formation strategies. Z. Phys. Chem., 237(3), 273–332 (2023) https://doi.org/10.1515/zpch-2022-0175.

Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev., 59(7), 617–30 (2007) https://doi.org/10.1016/j.addr.2007.05.011.

Tucker DA, Compton MV, Allen SJ, Mayo R, Hooper C, Ogletree B, Flynn P, Frazier A, McMurry S. Exploring barriers to doctoral education in communication sciences and disorders: Insights from practicing professionals. Perspectives of the ASHA Special Interest Groups, 5(6), 1552-63(2020) https://doi.org/10.1044/2020_PERSP-20-00019.

Buddhadev SS, Garala KC. Pharmaceutical co-crystals—a review. Proc., 62(1), 14 (2021) https://doi.org/10.3390/proceedings2020062014.

Torubaev YV, Skabitsky IV. A new supramolecular heterosynthon [C–I⋯O═C (carboxylate)] at work: engineering copper acetate co-crystals. Cryst Eng Comm., 22(40), 6661–73 (2020) https://doi.org/10.1039/D0CE01093F.

Bojarska J, Breza M, Remko M, Borowiecki P, Fruziński A, Madura ID, Kaczmarek K, Leśnikowski Z, Kraj A, Zielenkiewicz P, Wolf WM. Supramolecular synthon hierarchy in cyclopropyl-containing peptide-derived compounds. Cryst Eng Comm., 24(48), 8372–89 (2022) https://doi.org/10.1039/D0CE01093F.

Bojarska J, Remko M, Breza M, Madura ID, Kaczmarek K, Zabrocki J, Wolf WM. A supramolecular approach to structure-based design with a focus on synthons hierarchy in ornithine-derived ligands: review, synthesis, experimental and in silico studies. Molecules. 25(5), 1135 (2020). https://doi.org/10.3390/molecules25051135.

Lasalle BS, Pandian MS, Ramasamy P. Molecular interactions studies on chloroform in the environment of o-cresol: FTIR spectroscopy and quantum chemical calculations. Braz. J. Phys., 53(4), 97 (2023) https://doi.org/10.1007/s13538-023-01309-6.

Deng Y, Liu S, Jiang Y, Martins IC, Rades T. Recent advances in co-former screening and formation prediction of multicomponent solid forms of low molecular weight drugs. Pharmaceutics, 15(9), 2174 (2023) https://doi.org/10.3390/pharmaceutics15092174.

Ganie AA, Rashid S, Ahangar AA, Ismail TM, Sajith PK, Dar AA. Expanding the scope of hydroxyl–pyridine supramolecular synthon to design molecular solids. Cryst. Growth Des., 22(3), 1972–83 (2022) https://doi.org/10.1021/acs.cgd.2c00006.

Jain H, Sutradhar D, Roy S, Desiraju GR. Synthetic approaches to halogen bonded ternary co-crystals. Angew. Chem., 133(23), 12951–6 (2021) https://doi.org/10.1002/ange.202103516.

Jin S, Sanii R, Song BQ, Zaworotko MJ. Crystal Engineering of Ionic Cocrystals Sustained by the Phenol–Phenolate Supramolecular Heterosynthon. Crystal Growth & Design, 22(7), 4582-91(2022) https://doi.org/10.1021/acs.cgd.2c00471

Engel ER, Scott JL. Advances in the green chemistry of co-ordination polymer materials. Green Chem., 22(12), 3693–715 (2020) https://doi.org/10.1039/D0GC01074J.

Stanzione F, Chikhale R, Friggeri L. Cambridge Structural Database (CSD)–drug discovery through data mining & knowledge‐based tools. Comput. Drug Discov Methods Appl., 2 , 419–40 (2024) https://doi.org/10.1002/9783527840748.ch18.

Khalaji M, Potrzebowski MJ, Dudek MK. Virtual cocrystal screening methods as tools to understand the formation of pharmaceutical cocrystals—a case study of linezolid, a wide-range antibacterial drug. Crystal Growth & Design, 21(4), 2301-14(2021) https://doi.org/10.1021/acs.cgd.0c01707

Sarkar N, Gonnella NC, Krawiec M, Xin D, Aakeröy CB. Evaluating the predictive abilities of protocols based on hydrogen bond propensity, molecular complementarity, and hydrogen bond energy for co-crystal screening. Cryst. Growth Des., 20(11) , 7320–7 (2020) https://doi.org//10.1021/acs.cgd.0c00987.

Abramov YA, Wang J. Is it salt, co-crystal, or continuum? Successes and limitations of computationally efficient periodic system calculations. Cryst. Growth Des., 24(10) , 4017–24 (2024) https://doi.org/10.1021/acs.cgd.4c00195.

Werner JE, Swift JA. Organic solvates in the Cambridge Structural Database. Cryst Eng Comm., 23(7), 1555–65 (2021) https://doi.org/10.1039/D0CE01749C.

Yao C, Zhang S, Wang L, Tao X. Recent advances in polymorph discovery methods of organic crystals. Cryst. Growth Des., 23(1), 637–54 (2022) https://doi.org/10.1021/acs.cgd.2c00960.

Hall AV, Cruz-Cabeza AJ, Steed JW. What Has Carbamazepine Taught Crystal Engineers?. Crystal Growth & Design, 24(17), 7342-60(2024) https://doi.org//10.1021/acs.cgd.4c00555.

Bolla G, Sarma B, Nangia AK. Crystal engineering of pharmaceutical co-crystals in the discovery and development of improved drugs. Chem. Rev., 122(13), 11514–603 (2022) https://doi.org/10.1021/acs.chemrev.1c00987.

Kumar A, Nanda A. In-silico methods of co-crystal screening: a review on tools for rational design of pharmaceutical co-crystals. J. Drug Deliv. Sci. Technol., 63, 102527 (2021). https://doi.org/10.1016/j.jddst.2021.102527.

Banerjee M, Nimkar K, Naik S, Patravale V. Unlocking the potential of drug-drug cocrystals–A comprehensive review. Journal of Controlled Release, 348, 456-69(2022) https://doi.org/10.1016/j.jconrel.2022.06.003.

Abramov YA, Sun G, Zeng Q. Emerging landscape of computational modeling in pharmaceutical development. J. Chem. Inf. Model., 62(5), 1160–71 (2022) https://doi.org/10.1021/acs.jcim.1c01580.

Liu B, Li J, Zeng W, Yang W, Yan H, Li DC, Zhou Y, Gao X, Zhang Q. High-performance organic semiconducting polymers by a resonance-assisted hydrogen-binding approach. Chem. Mater., 33(2), 580–8 (2021) https://doi.org/10.1021/acs.chemmater.0c03720.

Denmark SE, Beutner GL. Principles, definitions, terminology, and orbital analysis of Lewis base–Lewis acid interactions leading to catalysis. Lewis Base Catal. Org. Synth., 31–54 (2024) https://doi.org/10.1002/9783527675142.ch2.

Solares-Briones M, Coyote-Dotor G, Páez-Franco JC, Zermeño-Ortega MR, de la O Contreras CM, Canseco-González D, Avila-Sorrosa A, Morales-Morales D, Germán-Acacio JM. Mechanochemistry: a green approach in the preparation of pharmaceutical co-crystals. Pharmaceutics, 13(6), 790 (2021) https://doi.org/10.3390/pharmaceutics13060790.

Thenge R, Chaware P, Adhao V, Mahajan N. Preparation and characterization of rabeprazole co-crystals. Int. J. Adv. Pharm. Biotech., 6, 23–6 (2020) https://doi.org/10.38111/ijapb.20200603007

Surov AO, Voronin AP, Manin AN, Manin NG, Kuzmina LG, Churakov AV, Perlovich GL. Pharmaceutical co-crystals of diflunisal and diclofenac with theophylline. Mol. Pharm., 11(10), 3707–15 (2024) https://doi.org/10.1021/mp5004652

Nascimento AL, Fernandes RP, Charpentier MD, ter Horst JH, Caires FJ, Chorilli M. Co-crystals of non-steroidal anti-inflammatory drugs (NSAIDs): insight toward formation, methods, and drug enhancement. Particuology, 58, 227–41 (2021) https://doi.org/10.1016/j.partic.2021.03.015

Ratih H, Pamudji JS, Alatas F, Soewandhi SN. Improving telmisartan mechanical properties through the formation of telmisartan and oxalic acid co-crystal by slow evaporation and ultrasound-assisted co-crystallization from solution methods. Songklanakarin J. Sci. Technol., 42(1), (2020) https://doi.org/10.14456/sjst-psu.2020.25.

Kavanagh ON. An analysis of multidrug multicomponent crystals as tools for drug development. J. Control. Release, 369, 1–1 (2024) http://dx.doi.org/10.1016/j.jconrel.2024.03.034

Mirocki A, Lopresti M, Palin L, Conterosito E, Sikorska E, Sikorski A, Milanesio M. Crystallization from solution versus mechanochemistry to obtain double-drug multicomponent crystals of ethacridine with salicylic/acetylsalicylic acids. Sci. Rep., 14(1), 1834 (2024) https://doi.org/10.1038/s41598-023-49922-4

HK S, HV J, Radhakrishna MU, BH JG. Enhancement of solubility and dissolution rate of acetylsalicylic acid via co-crystallization technique: a novel ASA–valine co-crystal. Int. J. Appl. Pharm., 13(1), 199–205 (2021) http://dx.doi.org/10.22159/ijap.2021v13i1.40054

Shete AS, Yadav AV, Doijad RC. Screening of aceclofenac for co-crystallization with nicotinamide: theoretical and practical perspective. Indian J. Pharm. Sci., 84(6), (2022) https://doi.org/10.36468/pharmaceutical-sciences.1037.

Mehta CH, Srinivas PP, Anusha SB, Mahany KB, Koteshwara KB, Nayak UY. Computational and experimental insights in design and development of aceclofenac co-crystals. Res. J. Pharm. Technol. 15(8), 3709–16 (2022) http://dx.doi.org/10.52711/0974-360X.2022.00622

Ganesan T, Muthudoss P, Voguri RS, Ghosal S, Ann EY, Kwok J, Shahnawaz SS, Omar MF, Allada R, See HH. A new febuxostat–telmisartan drug–drug co-crystal for gout–hypertension combination therapy. J. Pharm. Sci., 111(12), 3318–26 (2022) https://doi.org/10.1016/j.xphs.2022.08.022

Kulkarni AL, Shete SW, Hol VI, Bachhav RI. Novel pharmaceutical co-crystal of telmisartan and hydrochlorothiazide. Asian J. Pharm. Clin. Res., 13(3), 104–12 (2020) http://dx.doi.org/10.22159/ajpcr.2020.v13i3.36541

Bhandare R, Londhe V, Ashames A, Shaikh N, Alabdin SZ. Enhanced solubility of microwave-assisted synthesized acyclovir co-crystals. Res. J. Pharm. Technol., 13(12), 5979–86 (2020) http://dx.doi.org/10.5958/0974-360X.2020.01043.4

Dutt B, Choudhary M, Budhwar V. Preparation, characterization and evaluation of aspirin: benzoic acid co-crystals with enhanced pharmaceutical properties. Future J. Pharm. Sci., 6, 1–6 (2020) https://doi.org/10.1186/s43094-020-00052-y

Nugrahani I, Parwati RD. Challenges and progress in nonsteroidal anti-inflammatory drugs co-crystal development. Molecules., 26(14), 4185 (2021) https://doi.org/10.3390/molecules26144185.

Albadri AA, Jihad MI, Radhi ZA. Preparation, characterization, and in-vitro evaluation of tenoxicam–paracetamol co-crystal. Int. J. Drug Deliv. Technol., 10, 542–6 (2021) https://doi.org/10.25258/ijddt.10.4.6.

Xing C, Chen T, Wang L, An Q, Jin Y, Yang D, Zhang L, Du G, Lu Y. Two novel co-crystals of naproxen: comparison of stability, solubility and intermolecular interaction. Pharmaceuticals., 15(7), 807(2022) https://doi.org/10.3390/ph15070807.

Madgulkar A, Bhalekar M, Battase A, Waghchaure P, Pradhan S, Pagare D. Development of in-vitro in-vivo correlation of optimized fenofibrate–tartaric acid co-crystal tablet. Int. J. Pharm. Res. Dev., 3(1), 07-10(2021) https://doi.org/10.33545/26646862.2021.v3.i1a.19.

Tamhane K, Tamboli G, Wagh S, Khatal S, Kande T, Sayyad N. Design and development of co-crystals of paracetamol and mefenamic acid and its characterization. International Journal of Trend in Scientific Research and Development, 6(4), 694-698(2022) http://dx.doi.org/10.13140/RG.2.2.34485.90085

Imanto TE, Wikantyasning ER, Nurwaini SE, Amalia MO, Sambudi NS, Harun NY. Preparation and solid-state characterization of ketoprofen–succinic acid–saccharin co-crystal with improved solubility. Int. J. Appl. Pharm., 16(1), (2024) https://doi.org/10.22159/ijap.2024v16i1.48829.

Thenge R, Mehesare L, Adhao V, Shrikhande V, Mahajan N. Improvement of acid stability of lansoprazole by co-crystallization techniques. International Journal of Applied Pharmaceutics, 12(1), 202-220(2020) https://doi.org/10.46624/ajptr.2021.v11.i1.008.

Li ZH, Kim WS. Stoichiometric diversity of caffeine and 4-hydroxybenzoic acid co-crystals in Batchelor vortex flow. Cryst. Growth Des., 24(14), 5974–89 (2024) https://doi.org/10.1021/acs.cgd.4c00466.

Huang Z, Staufenbiel S, Bodmeier R. Combination of co-crystal and nanocrystal techniques to improve the solubility and dissolution rate of poorly soluble drugs. Pharm. Res., 39(5), 949–61 (2022) https://doi.org/10.1007/s11095-022-03243-9.

Zhang Y, Du X, Wang H, He Z, Liu H. Sacubitril–valsartan co-crystal revisited: role of polymer excipients in the formulation. Expert Opin. Drug Deliv., 18(4), 515–26 (2021) https://doi.org/10.1080/17425247.2021.1860940.

Thorpy MJ, Kushida CA, Bogan R, Winkelman J, Ohayon MM, Shapiro CM, Gudeman J. Improvement in sleep latency with extended-release once-nightly sodium oxybate for the treatment of adults with narcolepsy: Analysis from the phase 3 REST-ON clinical trial. Sleep Medicine: X., 7, 100113(2024) https://doi.org/10.1016/j.sleepx.2024.100113.

Nugrahani I, Jessica MA. Amino acids as the potential co-former for co-crystal development: a review. Molecules., 26(11), 3279 (2021) https://doi.org/10.3390/molecules26113279.

Nascimento AL, Fernandes RP, Charpentier MD, ter Horst JH, Caires FJ, Chorilli M. Co-crystals of non-steroidal anti-inflammatory drugs (NSAIDs): Insight toward formation, methods, and drug enhancement. Particuology., 58, 227–41 (2021) http://dx.doi.org/10.1016/j.partic.2021.03.015.

Mohammad KA, Wei MH, Zainudin EN, Abd Rahim S. Impact of the SAC:CBZ ratio on polymorphic transformation and morphology of carbamazepine-saccharin co-crystals using fast cooling crystallization. J. Therm. Anal. Calorim., 15, 1–3 (2024) https://doi.org/10.1007/s10973-024-13379-y.

Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, Qian S. Co-amorphous systems for the delivery of poorly water-soluble drugs: Recent advances and an update. Expert Opin. Drug Deliv., 17(10), 1411–35 (2020) https://doi.org/10.1080/17425247.2020.1796631.

Devi P, Budhwar V, Kakkar S, Kumar A. Pharmaceutical co-crystallization: Strategies for co-crystal design. Int. J. Life Sci. Pharm. Res., 13(6), 87–105 (2023) https://doi.org/10.22376/ijlpr.2023.13.6.P87-P105.

Samue R, Kunjal KK, Thayyil AR, Shabaraya RA. FDA regulatory implications for co-crystals and recent co-crystal patents. Int. J. Drug Regul. Aff., 10(3), 10–8 (2022) https://doi.org/10.22270/ijdra.v10i3.541.

Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharmaceutica Sinica B, 11(8), 2537-64(2021) https://doi.org/10.1016/j.apsb.2021.03.030.

Published

2025-06-30

How to Cite

Devi, P. ., Sonali Kakkar, Vikas Budhwar, Manjusha Choudhary, & Jogpal, V. . (2025). Harnessing hydrogen-bonding: advancements and applications in pharmaceutical co-crystallization. Journal of Applied Pharmaceutical Research, 13(3), 45-64. https://doi.org/10.69857/joapr.v13i3.554

Issue

Section

Articles