A novel mucoadhesive nanofabrication strategy for levofloxacin hemihydrate optimized via central composite design for Helicobacter pylori therapy
DOI:
https://doi.org/10.69857/joapr.v13i6.1478Keywords:
Helicobacter pylori, Levofloxacin hemihydrate, Chitosan, Carbopol 974P, N-Acetylcysteine, Mucoadhesive nanoparticleAbstract
Background: Helicobacter pylori (H. pylori), a gram-negative bacterium that causes gastritis, peptic ulcers, and gastric cancer, infects more than half of the global population. The recommended levofloxacin-based nanotherapy can be deployed to overcome rapid gastric emptying of the drug, inadequate drug concentration at the site of action, and the protective mucosal layer. The research established a goal to design and enhance Levofloxacin Hemihydrate(LH) Mucoadhesive Nanoparticles (LMNP) for better drug retention on stomach mucosa and mucosal adhesion, site-specific prolonged drug delivery against H. pylori. Methodology: The LMNP nanoparticles were prepared through ionic gelation of chitosan (CT), carbopol 974P(CP), and N-Acetylcysteine (NAC) before optimizing them using Central Composite Design (CCD) within Response Surface Methodology. The study used FTIR, DSC, XRD, SEM, particle size, zeta potential, entrapment efficiency (EE%), in vitro cumulative drug release %, and mucoadhesive strength (MS%) tests for characterization. Results and Discussion: The optimized LMNP formulation had a particle size of 245.4 ± 1.254 nm, an EE% of 72 ± 2.246%, and Prolonged drug release over 6 hours with in vitro CDR of 99.98 ± 0.115%, which fits the gastric mucus turnover time. FTIR, DSC, and XRD confirmed the compatibility of drug excipients. SEM revealed uniform spherical particles, and MS% was 62 ± 2.315%. The size of the particles and their entrapment efficiency , mucoadhesive properties, and in vitro cumulative drug release were influenced by CT and CP, but NAC enhanced mucopenetration effects. The CCD model successfully established formulation behavior and confirmed synergistic interactions among the excipients. By enhancing matrix formation and swelling, the combined impact of CT and CP significantly influenced. Conclusion: The LMNP system developed by employing CCD designs and ionic gelation methodology demonstrated promising characteristics for gastric retention and prolonged drug release , which could enhance H. pylori clearance rates. The drug delivery platform presents a practical, biocompatible solution to address challenges in conventional therapy.
Downloads
References
Yi M, Chen S, Yi X, Zhang F, Zhou X, Zeng M, Song H. Helicobacter pylori infection process: from the molecular world to clinical treatment. Front. Microbiol., 16, 1541140 (2025) https://doi.org/10.3389/fmicb.2025.1541140
Siddiqui MAM, Siddiqui MMR. 38 years journey of Helicobacter pylori: where it is now? J. Bangladesh Coll. Phys. Surg., 38(2), 53–55 (2020) https://doi.org/10.3329/jbcps.v38i2.45627
Malfertheiner P, Camargo MC, El-Omar E, Liou JM, Peek R, Schulz C, Smith SI, Suerbaum S. Helicobacter pylori infection. Nat. Rev. Dis. Primers, 9(1), 19 (2023) https://doi.org/10.1038/s41572-023-00431-8
Liou JM, Malfertheiner P, Lee YC, Sheu BS, Sugano K, Cheng HC et al. Screening and eradication of Helicobacter pylori for gastric cancer prevention: the Taipei global consensus. Gut, 69(12), 2093–112 (2020) https://doi.org/10.1136/gutjnl-2020-322368
Matysiak-Budnik T, Priadko K, Bossard C, Chapelle N, Ruskoné-Fourmestraux A. Clinical management of patients with gastric MALT lymphoma: a gastroenterologist’s point of view. Cancers, 15(15), 3811 (2023) https://doi.org/10.3390/cancers15153811
Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Santos Marques H, de Brito BB, França da Silva FA, Souza CL, Oliveira MV, de Melo FF. From Helicobacter pylori infection to gastric cancer: current evidence on the immune response. World J. Clin. Oncol., 13(3), 186–99 (2022) https://doi.org/10.5306/wjco.v13.i3.186
Seeger AY, Ringling MD, Zohair H, Blanke SR. Risk factors associated with gastric malignancy during chronic Helicobacter pylori infection. Med. Res. Arch., 8, 1–20 (2020) https://doi.org/10.18103/mra.v8i3.2068
Shatila M, Thomas AS. Current and future perspectives in the diagnosis and management of Helicobacter pylori infection. J. Clin. Med., 11(17), 5086 (2022) https://doi.org/10.3390/jcm11175086
Park JY, Georges D, Alberts CJ. Global lifetime estimates of expected and preventable gastric cancers across 185 countries. Nat. Med., 31, 3020–7 (2025) https://doi.org/10.1038/s41591-025-03793-6
Chen YC, Malfertheiner P, Yu HT, Kuo CL, Chang YY, Meng FT. Global prevalence of Helicobacter pylori infection and incidence of gastric cancer between 1980 and 2022. Gastroenterology, 166(4), 605–19 (2024) https://doi.org/10.1053/j.gastro.2023.12.022
Ali A, AlHussaini KI. Helicobacter pylori: a contemporary perspective on pathogenesis, diagnosis and treatment strategies. Microorganisms, 12(1), 222 (2024) https://doi.org/10.3390/microorganisms12010222
Azrad M, Vazana D, On A, Paritski M, Rohana H, Roshrosh H, Agay-Shay K, Peretz A. Antibiotic resistance patterns of Helicobacter pylori in North Israel – a six-year study. Helicobacter, 27(6), e12932 (2022) https://doi.org/10.1111/hel.12932
Li B, Lan X, Wang L, Zhao J, Ding J, Ding H, Lei J, Wei Y, Zhang W. Proton-pump inhibitor and amoxicillin-based triple therapy containing clarithromycin versus metronidazole for Helicobacter pylori: a meta-analysis. Microb. Pathog., 142, 104075 (2020) https://doi.org/10.1016/j.micpath.2020.104075
Jukic I, Vukovic J, Rusic D, Bozic J, Bukic J, Leskur D, Perisin AS, Modun D. Adherence to Maastricht V/Florence consensus report for the management of Helicobacter pylori infection among primary care physicians and medical students in Croatia: a cross-sectional study. Helicobacter, 26(2), e12775 (2020) https://doi.org/10.1111/hel.12775
Chey WD, Howden CW, Moss SF, Morgan DR, Greer KB, Grover S, Shah SC. ACG clinical guideline: treatment of Helicobacter pylori infection. Am. J. Gastroenterol., 119(9), 1730–53 (2024) https://doi.org/10.14309/ajg.0000000000002968
Lai Y, Wei W, Du Y, Gao J, Li Z. Biomaterials for Helicobacter pylori therapy: therapeutic potential and future perspectives. Gut Microbes, 14(1), 2120747 (2022) https://doi.org/10.1080/19490976.2022.2120747
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial actions and applications of chitosan. Polymers, 13, 904 (2021) https://doi.org/10.3390/polym13060904
Chang SH, Hsieh PL, Tsai GJ. Chitosan inhibits Helicobacter pylori growth and urease production. Mar. Drugs, 18(11), 542 (2020) https://doi.org/10.3390/md18110542
Tolaimate A, Desbrières J, Rhazi M, Alagui A, Vincendon M, Vottero P. On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer, 41(7), 2463–9 (2000) https://doi.org/10.1016/S0032-3861(99)00400-0
Tan Q, Kan Y, Huang H, Wu W, Lu X. Probing the molecular interactions of chitosan films in acidic solutions with different salt ions. Coatings, 10(11), 1052 (2020) https://doi.org/10.3390/coatings10111052
Ways TMM, Filippov SK, Maji S, Glassner M, Cegłowski M, Hoogenboom R, King S, Lau WM, Khutoryanskiy VV. Mucus-penetrating nanoparticles based on chitosan grafted with various non-ionic polymers: synthesis, structural characterisation and diffusion studies. J. Colloid Interface Sci., 626, 251–64 (2022) https://doi.org/10.1016/j.jcis.2022.06.126
Rehman S, Jamil QA, Noreen S, Ashraf MA, Madni A, Mahmood H, Shoukat H, Raza MR. Preparation and evaluation of pH-sensitive chitosan/alginate nanohybrid mucoadhesive hydrogel beads: an effective approach to a gastro-retentive drug delivery system. Pharmaceutics, 16(11), 1451 (2024) https://doi.org/10.3390/pharmaceutics16111451
Raj Kumar, Tamanna Islam, Md Nurunnabi. Mucoadhesive carriers for oral drug delivery. J. Control. Release, 351, 504–59 (2022) https://doi.org/10.1016/j.jconrel.2022.09.024
Migliozzi S, Meridiano G, Angeli P, Mazzei L. Investigation of the swollen state of Carbopol molecules in non-aqueous solvents through rheological characterization. Soft Matter, 16(33), 7742–55 (2020) https://doi.org/10.1039/d0sm01196g
Kaur M, Sharma A, Puri V, Aggarwal G, Maman P, Huanbutta K, Nagpal M, Sangnim T. Chitosan-based polymer blends for drug delivery systems. Polymers, 15(9), 2028 (2023) https://doi.org/10.3390/polym15092028
Gökçe G, Karavana SY, Bağriyanik A, Pekçetin C, Algin Yapar E, Aybar Tural G, Gökçe EH. Design and in vitro, in vivo evaluation of antioxidant bioadhesive gels for burn treatment. Turk. J. Biol., 46(3), 251–62 (2022) https://doi.org/10.55730/1300-0152.2613
Mashabela LT, Maboa MM, Miya NF, Ajayi TO, Chasara RS, Milne M, Mokhele S, Demana PH, Witika BA, Siwe-Noundou X, Poka MS. A comprehensive review of cross-linked gels as vehicles for drug delivery to treat central nervous system disorders. Gels, 8(9), 563 (2022) https://doi.org/10.3390/gels8090563
Manoharan A, Ognenovska S, Paino D, Whiteley G, Glasbey T, Kriel FH, Farrell J, Moore KH, Manos J, Das T. N-acetylcysteine protects bladder epithelial cells from bacterial invasion and displays antibiofilm activity against urinary tract bacterial pathogens. Antibiotics, 10(8), 900 (2021) https://doi.org/10.3390/antibiotics10080900
Pinto RM, Monteiro C, Costa Lima SA, Casal S, Van Dijck P, Martins MCL, Nunes C, Reis S. N-acetyl-L-cysteine-loaded nanosystems as a promising therapeutic approach toward the eradication of Pseudomonas aeruginosa biofilms. ACS Appl. Mater. Interfaces, 13(36), 42329–43 (2021) https://doi.org/10.1021/acsami.1c05124
Tenório MCS, Graciliano NG, Moura FA, Oliveira ACM, Goulart MOF. N-acetylcysteine (NAC): impacts on human health. Antioxidants, 10, 967 (2021) https://doi.org/10.3390/antiox10060967
Pedre B, Barayeu U, Ezeriņa D, Dick TP. Mechanism of NAC: role of H₂S and sulfane sulfur. Pharmacol. Ther., 228, 107916 (2021) https://doi.org/10.1016/j.pharmthera.2021.107916
Taipaleenmäki E, Städler B. Recent advancements in using polymers for intestinal mucoadhesion and mucopenetration. Macromol. Biosci., 20(3), e1900342 (2020) https://doi.org/10.1002/mabi.201900342
Reji M, Kumar R. Response surface methodology (RSM): an overview to analyze multivariate data. Indian J. Microbiol. Res., 9(4), 241–8 (2022) https://doi.org/10.18231/j.ijmr.2022.042
Hassan H, Adam SK, Alias E, Meor Mohd Affandi MMR, Shamsuddin AF, Basir R. Central composite design for formulation and optimization of solid lipid nanoparticles to enhance oral bioavailability of acyclovir. Molecules, 26(18), 5432 (2021) https://doi.org/10.3390/molecules26185432
Alam P, Shakeel F, Foudah AI, Alshehri S, Salfi R, Alqarni MH, et al. Central composite design (CCD) for the optimisation of ethosomal gel formulation of Punica granatum extract: in vitro and in vivo evaluations. Gels, 8(8), 511 (2022) https://doi.org/10.3390/gels8080511
Rathee S, Ojha A, Singh KR, Arora VK, Prabhakar PK, Agnihotri S, et al. Revolutionizing goat milk gels: a central composite design approach for synthesizing ascorbic acid functionalized iron oxide nanoparticles decorated alginate chitosan nanoparticles fortified smart gels. Heliyon, 9(9), e19890 (2023) https://doi.org/10.1016/j.heliyon.2023.e19890
Szpisják-Gulyás N, Al-Tayawi AN, Horváth ZH, László Z, Kertész S, Hodúr C. Methods for experimental design, central composite design and the Box–Behnken design, to optimise operational parameters: a review. Period. Polytech. Chem. Eng., 67(4), 521–37 (2023) https://doi.org/10.1556/066.2023.00235
Zamora Lagos SI, Murillo Salas J, Valencia Zapata ME, Mina Hernández JH, Grande Tovar CD. Optimization by central composite experimental design of the synthesis of physically crosslinked chitosan spheres. Biomimetics, 5(4), 63 (2020) https://doi.org/10.3390/biomimetics5040063
Arshad MS, Kiran M, Mudassir J, Farhan M, Hussain A, Abbas N. Formulation, optimization, in vitro and in vivo evaluation of levofloxacin hemihydrate floating tablets. Braz. J. Pharm. Sci., 58, e18630 (2022) https://doi.org/10.1590/s2175-97902022e18630
Numan RS, Abdoon FM. Utility of silver nanoparticles as coloring sensor for determination of levofloxacin in its pure form and pharmaceutical formulations using spectrophotometric technique. AIP Conf. Proc., 2213, 020103 (2020) https://doi.org/10.1063/5.0000235
Sabei FY, Safhi AY, Alsalhi A, Khan KA, Bakkari MA, Al Fatease A. Preparation and in vitro evaluation of levofloxacin-loaded floating tablets using various rate-controlling agents. ACS Omega, 8(45), 42659–66 (2023) https://doi.org/10.1021/acsomega.3c05419
Nugrahani I, Nuur Aini AF, Wibowo MS. Solid-state properties and antibiotic potency of levofloxacin-dicarboxylate salts prepared by the green method. Heliyon, 10(22), e40373 (2024) https://doi.org/10.1016/j.heliyon.2024.e40373
Saxena GK, Tiwari R. Design, development and characterization of gastroretentive floating tablet of levofloxacin using natural polymer peanut husk. Int. J. Drug Deliv. Technol., 14(3), 1404–7 (2024) https://doi.org/10.25258/ijddt.14.3.22
Kadri L, Carta M, Lampronti G, Delogu F, Tajber L. Solvent-induced crystal polymorphism in liquid crystal systems: characterization and phase transformation. Mol. Pharm., 21(6), 2838–53 (2024) https://doi.org/10.1021/acs.molpharmaceut.4c00188
Wei N, Jia L, Shang Z, Gong J, Wu S, Wang J, et al. Polymorphism of levofloxacin: structure, properties and phase transformation. CrystEngComm, 21(36), 5452–62 (2019) https://doi.org/10.1039/C9CE00656B
Mohamed S, Nasr M, Refai H. Preparation and characterization of terbutaline sulphate-loaded chitosan/Carbopol nanoparticles. Int. J. Pharm. Sci. Drug Res., 3(1), 30–4 (2019) https://doi.org/10.21608/APRH.2019.6474.1071
Ruiz Pulido G, Quintanar Guerrero D, Serrano Mora LE, Medina DI. Triborheological analysis of reconstituted gastrointestinal mucus/chitosan: TPP nanoparticles system to study mucoadhesion phenomenon under different pH conditions. Polymers, 14(22), 4978 (2022) https://doi.org/10.3390/polym14224978
López-López M, Fernández-Delgado A, Moyá ML, Blanco-Arévalo D, Carrera C, de la Haba RR. Optimized preparation of levofloxacin loaded polymeric nanoparticles. Pharmaceutics, 11(2), 57 (2019) https://doi.org/10.3390/pharmaceutics11020057
Mohamed S, Nasereldin M, Refai H. Preparation and characterization of terbutaline sulphate loaded chitosan/Carbopol nanoparticles. J. Adv. Pharm. Res., 3(1), 30–4 (2019) https://doi.org/10.21608/APRH.2019.6474.1071
Alhowyan AA, Kalam MA, Iqbal M, Raish M, El-Toni AM, Alkholief M. Mesoporous silica nanoparticles coated with carboxymethyl chitosan for 5-fluorouracil ocular delivery: characterization, in vitro and in vivo studies. Molecules, 28(3), 1260 (2023) https://doi.org/10.3390/molecules28031260
Dudhat K, Patel H. Preparation and evaluation of pirfenidone-loaded chitosan nanoparticles for pulmonary delivery in idiopathic pulmonary fibrosis. Futur. J. Pharm. Sci., 8, 29 (2022) https://doi.org/10.1186/s43094-022-00419-3
Gupta S, Dubey S, Patel SK, Lakra AP, Minz S. Chitosan-coated CMC and Carbopol hydrogel beads for controlled release of metformin in diabetes management. J. Appl. Pharm. Res., 13(2), 73–85 (2025) https://doi.org/10.69857/joapr.v13i2.1006
Chechare DD, Siddaiah M. Formulation and evaluation of mucoadhesive microspheres of metronidazole. J. Appl. Pharm. Res., 12(1), 93–9 (2024) https://doi.org/10.18231/j.joapr.2024.12.1.93.99
Embafrash Berhe H, Tesfay Mezgebo D, Abrha S, Gebremeskel Haile T, Molla F. Extraction, characterization, and evaluation of Lepidium sativum Linn. mucilage as a mucoadhesive polymer. Adv. Pharmacol. Pharm. Sci., 2023(1), 5535344 (2023) https://doi.org/10.1155/2023/5535344
Danyuo Y, Ani CJ, Salifu AA, Obayemi JD, Dozie-Nwachukwu S, Obanawu VO, Soboyejo ABO, Soboyejo WO. Anomalous release kinetics of prodigiosin from poly-N-isopropyl-acrylamide based hydrogels for the treatment of triple negative breast cancer. Sci. Rep., 9, 3862 (2019) https://doi.org/10.1038/s41598-019-39578-4
Sabei FY, Safhi AY, Alsalhi A, Khan KA, Bakkari MA, Al Fatease A, Madkhali OA. Preparation and in vitro evaluation of levofloxacin-loaded floating tablets using various rate-controlling agents. ACS Omega, 8(45), 42659–66 (2023) https://doi.org/10.1021/acsomega.3c05419
Lin YS, Tsay RY. Drug release from a spherical matrix: theoretical analysis for a finite dissolution rate affected by geometric shape of dispersed drugs. Pharmaceutics, 12, 582 (2020) https://doi.org/10.3390/pharmaceutics12060582
Uskoković V. Mechanism of formation governs the mechanism of release of antibiotics from calcium phosphate nanopowders and cements in a drug-dependent manner. J. Mater. Chem. B, 7(25), 3982–92 (2019) https://doi.org/10.1039/C9TB00444K
Published
How to Cite
Issue
Section
Copyright (c) 2025 R Neelamegarajan, N Venkateshwaramurthy, V Senthil, K Jaganathan, P Manivasakam

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.







