Heterocyclic scaffolds in antibiofilm strategies against drug-resistant pathogens: a comprehensive review
DOI:
https://doi.org/10.69857/joapr.v13i5.1011Keywords:
Biofilm, Quorum-sensing, heterocyclic compounds, Structure-activity relationship, multidrug-resistant strains, EPS matrixAbstract
Background: Antimicrobial resistance (AMR) is a primary global health concern, exacerbated by the ability of drug-resistant pathogens to form biofilms. These biofilms, which harbor microbial communities embedded in an extracellular polymeric matrix (EPS), enhance antibiotic resistance and immune responses, leading to persistent infections. Heterocyclic compounds have shown significant potential in combating biofilm-associated infections due to their structural diversity and mechanisms of action. Methodology: This review systematically examines the antibiofilm potential of various heterocyclic scaffolds, including imidazoles, pyrazoles, indoles, quinolines, coumarins, and select six-membered heterocycles (pyridine, morpholine, piperazine). Studies were analyzed based on their mechanisms of action, structure-activity relationships (SAR), and synergy with conventional antibiotics. Result and Discussion: Imidazole derivatives disrupted biofilm integrity and enhanced antibiotic susceptibility in Pseudomonas aeruginosa and Staphylococcus aureus, with IC50 values ranging from 0.53 to 9.5 µM. Pyrazole-based compounds inhibited Staphylococcus epidermidis biofilms, with IC50 values ranging from 3.1 to 15.6 µg/mL. Indole derivatives, particularly pyrroloindoline triazole amides, inhibited MRSA biofilms with IC50 values as low as 2.8 µM by targeting quorum sensing and curli production. Quinoline compounds demonstrated greater than 90% inhibition of E. coli and P. aeruginosa biofilms and showed synergistic effects with antibiotics. Conclusion: Heterocyclic compounds exhibit promising antibiofilm activity, presenting a viable approach to overcoming AMR. These compounds not only disrupt biofilm formation but also enhance the efficacy of conventional antibiotics through synergistic interactions. Such synergy potentiates the antimicrobial effect by improving antibiotic penetration or disrupting resistance pathways. Future research should focus on optimizing pharmacokinetics and exploring these synergistic combinations to improve clinical applicability.
Downloads
References
Li X, Lee J. Antibiofilm agents: A new perspective for antimicrobial strategy. Journal of Microbiology, 55 (9), 699-708 (2017) https://doi.org/10.1007/s12275-017-7274-x
Parsek M, Singh P. Bacterial Biofilms: An Emerging Link to Disease Pathogenesis. Annual Review of Microbiology, 57, 677-701 (2003) https://doi.org/10.1146/annurev.micro.57.030502.090720
Kumagai Y, Matsuo J, Cheng Z, Hayakawa Y, Rikihisa Y. Cyclic dimeric GMP signaling regulates intracellular aggregation, sessility, and growth of Ehrlichia chaffeensis. Infection and Immunity, 79 (1), 495-505 (2011) https://doi.org/10.1128/IAI.05320-11
Kim S, Lee J. Biofilm dispersion in Pseudomonas aeruginosa. Journal of Microbiology, 54 (2), 81-86 (2016) https://doi.org/10.1007/s12275-016-5528-7
Jia XM, Cheng C, Liu T, Zhao YL, Guo B, Tang L, Yang YY. Synthesis and antibiofilm evaluation of N-acyl-2-aminopyrimidine derivatives against Acinetobacter baumannii. Bioorganic & Medicinal Chemistry, 67, 117095 (2022) https://doi.org/10.1016/j.bmc.2022.117095
Costerton J, Stewart P, Greenberg E. Bacterial biofilms: A common cause of persistent infections. Science, 284 (5418), 1318-1322 (1999) https://doi.org/10.1126/science.284.5418.1318
Lynch A, Robertson G. Bacterial and fungal biofilm infections. Annual Review of Medicine, 59, 415-428 (2008) https://doi.org/10.1146/annurev.med.59.110106.132000
Tolker-Nielsen T. Pseudomonas aeruginosa biofilm infections: From molecular biofilm biology to new treatment possibilities. APMIS, 122 (S139), 1-51 (2014) https://doi.org/10.1111/apm.12335
Vuotto C, Longo F, Pascolini C, Donelli G, Balice MP, Libori MF, Tiracchia V, Salvia A, Varaldo PE. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. Journal of Applied Microbiology, 123 (5), 1173-1188 (2017) https://doi.org/10.1111/jam.13533
Fiedler T, Köller T, Kreikemeyer B. Streptococcus pyogenes biofilms-formation, biology, and clinical relevance. Frontiers in Cellular and Infection Microbiology, 5, 15 (2015) https://doi.org/10.3389/fcimb.2015.00015
Brouwer S, Barnett T, Rivera-Hernandez T, Rohde M, Walker M. Streptococcus pyogenes adhesion and colonization. FEBS Letters, 590 (21), 3739-3757 (2016) https://doi.org/10.1002/1873-3468.12254
Das T, et al. Modulation of S. aureus and P. aeruginosa biofilm: an in vitro study with new coumarin derivatives. World Journal of Microbiology and Biotechnology, 34, 19 (2018) https://doi.org/10.1007/s11274-018-2545-1
Moormeier D, Bayles K. Staphylococcus aureus biofilm: a complex developmental organism. Molecular Microbiology, 104 (3), 365-376 (2017) https://doi.org/10.1111/mmi.13634
Suresh M, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. International Journal of Medical Microbiology, 309 (1), 1-12 (2019) https://doi.org/10.1016/j.ijmm.2018.11.002
Arber N, Militianu A, Ben-Yehuda A, Krivoy N, Plnkhas J, Sidi Y. Native valve staphylococcus epidermidis endocarditis: report of seven cases and review of the literature. The American Journal of Medicine, 91 (6), 625-631 (1991) https://doi.org/10.1016/S0002-9343(05)80067-1
Dengler Haunreiter V, Boumasmoud M, Häffner N, Wipfli D, Leimer N, Rachmühl C, Kühnert D, Achermann Y, Zbinden R, Benussi S, Vulin C, Zinkernagel AS. In-host evolution of Staphylococcus epidermidis in a pacemaker-associated endocarditis resulting in increased antibiotic tolerance. Nature Communications, 10, 1149 (2019) https://doi.org/10.1038/s41467-019-09053-9
Pougnet R, Sapin J, De Parscau L, Pougnet L. Streptococcus pneumoniae urinary tract infection in pedeatrics. Annales de Biologie Clinique, 77 (1), 79-82 (2019) https://doi.org/10.1684/abc.2017.1241
Thacharodi A, Hassan S, Vithlani A, Ahmed T, Kavish S, Blacknell N, Pugazhendhi A. The burden of group A Streptococcus (GAS) infections: The challenge continues in the twenty-first century. iScience, 28 (1), 111677 (2025) https://doi.org/10.1016/j.isci.2024.111677
Michelli E, Millán A, Rodulfo H, Michelli M, Luiggi J, Carreño N, de Donato M. Identificación de Escherichia coli enteropatógena en niños con síndrome diarreico agudo del Estado Sucre, Venezuela. Biomedica, 36 (0), 105-115 (2016) https://doi.org/10.7705/biomedica.v36i0.2928
Stotka J, Rupp M. Klebsiella pneumoniae urinary tract infection complicated by endophthalmitis, perinephric abscess, and ecthyma gangrenosum. Southern Medical Journal, 84 (6), 790-793 (1991) https://doi.org/10.1097/00007611-199106000-00032
Kim SE, Park S-H, Park HB, Park K-H, Kim S-H, Jung S-I, Shin J-H, Jang H-C, Kang SJ. Nosocomial Pseudomonas putida Bacteremia: High Rates of Carbapenem Resistance and Mortality. Chonnam Medical Journal, 48 (2), 91-95 (2012) https://doi.org/10.4068/cmj.2012.48.2.91
Taha M, Abdelbary H, Ross F, Carli A. New Innovations in the Treatment of PJI and Biofilms---Clinical and Preclinical Topics. Current Reviews in Musculoskeletal Medicine, 11 (3), 380-388 (2018) https://doi.org/10.1007/s12178-018-9500-5
Vidya P, Smith L, Beaudoin T, Yau YCW, Clark S, Coburn B, Guttman DS, Hwang DM, Waters V. Chronic infection phenotypes of Pseudomonas aeruginosa are associated with failure of eradication in children with cystic fibrosis. European Journal of Clinical Microbiology & Infectious Diseases, 35 (1), 67-74 (2016) https://doi.org/10.1007/s10096-015-2509-4
Kwong K, Benedetti A, Yau Y, Waters V, Nguyen D. Failed Eradication Therapy of New-Onset Pseudomonas aeruginosa Infections in Children with Cystic Fibrosis Is Associated with Bacterial Resistance to Neutrophil Functions. The Journal of Infectious Diseases, 225 (7), 1268-1276 (2022) https://doi.org/10.1093/infdis/jiab102
Anderson G, Kenney T, Macleod D, Henig N, O'Toole G. Eradication of Pseudomonas aeruginosa biofilms on cultured airway cells by a fosfomycin/tobramycin antibiotic combination. Pathogens and Disease, 69 (1), 1-4 (2013) https://doi.org/10.1111/2049-632X.12015
Zardi E, Franceschi F. Prosthetic joint infection. A relevant public health issue. Journal of Infection and Public Health, 13 (7), 935-936 (2020) https://doi.org/10.1016/j.jiph.2020.09.006
Raghavendran K, Mylotte J, Scannapieco F. Nursing home-associated pneumonia, hospital-acquired pneumonia and ventilator-associated pneumonia: The contribution of dental biofilms and periodontal inflammation. Periodontology 2000, 44 (1), 164-177 (2007) https://doi.org/10.1111/j.1600-0757.2006.00206.x
Ko RE, Min KH, Hong SB, Baek AR, Lee HK, Cho WH, Kim C, Chang Y, Lee SS, Oh JY, Lee HB, Bae S, Moon JY, Yoo KH, Jeon K. Characteristics, management, and clinical outcomes of patients with hospital-acquired and ventilator-associated pneumonia: A multicenter Cohort study in Korea. Tuberculosis and Respiratory Diseases, 84 (4), 317-325 (2021) https://doi.org/10.4046/TRD.2021.0018
Raycheva R, Rangelova V, Kevorkyan A. Cost Analysis for Patients with Ventilator-Associated Pneumonia in the Neonatal Intensive Care Unit. Healthcare, 10 (6), 980 (2022) https://doi.org/10.3390/healthcare10060980
et al. Factors Related to Hospital Stay Among Patients With Nosocomial Infection Acquired in the Intensive Care Unit. Infection Control & Hospital Epidemiology, 24 (3), 207-208 (2003) https://doi.org/10.1086/502191
Hrynyshyn A, Simões M, Borges A. Biofilms in Surgical Site Infections: Recent Advances and Novel Prevention and Eradication Strategies. Antibiotics, 11 (1), 69 (2022) https://doi.org/10.3390/antibiotics11010069
Assefa M, Amare A. Biofilm-Associated Multi-Drug Resistance in Hospital-Acquired Infections: A Review. Infection and Drug Resistance, 15, 5061-5068 (2022) https://doi.org/10.2147/IDR.S379502
Bhunia S, Mallick S, Mondal AI, Saha A, Ray P, Roy S, Chakraborty T. Exploring the scope of traditional Chinese medicinal plants in battle of antibiotic resistance – A comprehensive review. Pharmacol. Res. - Mod. Chinese Med., 14, 100574 (2025) https://doi.org/10.1016/j.prmcm.2025.100574.
Thorarinsdottir H, Kander T, Holmberg A, Petronis S, Klarin B. Biofilm formation on three different endotracheal tubes: A prospective clinical trial. Critical Care, 24, 161 (2020) https://doi.org/10.1186/s13054-020-03092-1
Zafer M, Mohamed G, Ibrahim S, Ghosh S, Bornman C, Elfaky M. Biofilm-mediated infections by multidrug-resistant microbes: a comprehensive exploration and forward perspectives. Archives of Microbiology, 206 (1), 27 (2024) https://doi.org/10.1007/s00203-023-03826-z
Swedan S, Aldakhily D. Antimicrobial resistance, biofilm formation, and molecular detection of efflux pump and biofilm genes among Klebsiella pneumoniae clinical isolates from Northern Jordan. Heliyon, 10 (14), e34370 (2024) https://doi.org/10.1016/j.heliyon.2024.e34370
Park JY, Park S, Lee SH, Lee MG, Park YB, Oh KC, Lee JM, Kim D Il, Seo KH, Shin KC, Yoo KH, Ko Y, Jang SH, Jung KS, Hwang Y Il. Microorganisms causing community-acquired acute bronchitis: The role of bacterial infection. PLoS One, 11 (10), e0165553 (2016) https://doi.org/10.1371/journal.pone.0165553
Zou Z, Potter RF, McCoy WH, Wildenthal JA, Katumba GL, Mucha PJ, Dantas G, Henderson JP. E. coli catheter-associated urinary tract infections are associated with distinctive virulence and biofilm gene determinants. JCI Insight, 8 (24), e161461 (2023) https://doi.org/10.1172/jci.insight.161461
Almalki M, Varghese R. Prevalence of catheter associated biofilm producing bacteria and their antibiotic sensitivity pattern. Journal of King Saud University - Science, 32 (1), 860-865 (2020) https://doi.org/10.1016/j.jksus.2019.11.037
Cha JO, Yoo J Il, Yoo JS, Chung HS, Park SH, Kim HS, Lee YS, Chung GT. Investigation of Biofilm Formation and its Association with the Molecular and Clinical Characteristics of Methicillin-resistant Staphylococcus aureus. Osong Public Health and Research Perspectives, 4 (5), 225-232 (2013) https://doi.org/10.1016/j.phrp.2013.09.001
Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M. Developing natural products as potential anti-biofilm agents. Chinese Medicine, 14, 11 (2019) https://doi.org/10.1186/s13020-019-0232-2
Boulangé-Petermann L. Processes of bioadhesion on stainless steel surfaces and cleanability: A review with special reference to the food industry. Biofouling, 10 (4), 275-300 (1996) https://doi.org/10.1080/08927019609386287
Bjarnsholt T, Alhede M, Alhede M, Eickhardt-Sørensen SR, Moser C, Kühl M, Jensen PØ, Høiby N. The in vivo biofilm. Trends in Microbiology, 21 (9), 466-474 (2013) https://doi.org/10.1016/j.tim.2013.06.002
Ren Y, Wang C, Chen Z, Allan E, van der Mei HC, Busscher HJ. Emergent heterogeneous microenvironments in biofilms: Substratum surface heterogeneity and bacterial adhesion force-sensing. FEMS Microbiol. Rev., 42, 259–72 (2018) https://doi.org/10.1093/femsre/fuy001.
Stewart P, Franklin M. Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 6 (3), 199-210 (2008) https://doi.org/10.1038/nrmicro1838
Ayoub H, Gregory R, Tang Q, Lippert F. The influence of biofilm maturation on fluoride's anticaries efficacy. Clinical Oral Investigations, 26 (2), 1965-1976 (2022) https://doi.org/10.1007/s00784-021-04100-6
Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, Qiu J, Guan X, Huang T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Frontiers in Microbiology, 11, 928 (2020) https://doi.org/10.3389/fmicb.2020.00928
Liu HY, Prentice EL, Webber MA. Mechanisms of antimicrobial resistance in biofilms. Npj Antimicrobials and Resistance, 2, (2024) https://doi.org/10.1038/s44259-024-00046-3.
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35 (4), 322-332 (2010) https://doi.org/10.1016/j.ijantimicag.2009.12.011
Hall C, Mah T. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews, 41 (3), 276-301 (2017) https://doi.org/10.1093/femsre/fux010
Grooters KE, Ku JC, Richter DM, Krinock MJ, Minor A, Li P, Kim A, Sawyer R, Li Y. Strategies for combating antibiotic resistance in bacterial biofilms. Frontiers in Cellular and Infection Microbiology, 14, 1352273 (2024) https://doi.org/10.3389/fcimb.2024.1352273
de Brito F, de Freitas A, Nascimento M. Multidrug-Resistant Biofilms (MDR): Main Mechanisms of Tolerance and Resistance in the Food Supply Chain. Pathogens, 11 (12), 1416 (2022) https://doi.org/10.3390/pathogens11121416
Rather M, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian Journal of Microbiology, 52 (4), 1701-1718 (2021) https://doi.org/10.1007/s42770-021-00624-x
Mirghani R, Saba T, Khaliq H, Mitchell J, Do L, Chambi L, Diaz K, Kennedy T, Alkassab K, Huynh T, Elmi M, Martinez J, Sawan S, Rijal G. Biofilms: Formation, drug resistance and alternatives to conventional approaches. AIMS Microbiology, 8 (3), 239-277 (2022) https://doi.org/10.3934/microbiol.2022019
Nisar S, Kirkpatrick L, Shupp J. Bacterial Virulence Factors and Their Contribution to Pathophysiology after Thermal Injury. Surgical Infections, 22 (4), 405-419 (2021) https://doi.org/10.1089/sur.2020.188
Song A, In L, Lim S, Rahim R. A review on Lactococcus lactis: From food to factory. Microbial Cell Factories, 16, 55, (2017) https://doi.org/10.1186/s12934-017-0669-x
Klein E, Smith D, Laxminarayan R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerging Infectious Diseases, 13 (12), 1840-1846 (2007) https://doi.org/10.3201/eid1312.070629
West KHJ, Ma S V., Pensinger DA, Tucholski T, Tiambeng TN, Eisenbraun EL, Yehuda A, Hayouka Z, Ge Y, Sauer JD, Blackwell HE. Characterization of an Autoinducing Peptide Signal Reveals Highly Efficacious Synthetic Inhibitors and Activators of Quorum Sensing and Biofilm Formation in Listeria monocytogenes. Biochemistry, 62 (17), 2546-2558 (2023) https://doi.org/10.1021/acs.biochem.3c00373
Jiang K, Xu Y, Yuan B, Yue Y, Zhao M, Luo R, Wu H, Wang L, Zhang Y, Xiao J, Lin F. Effect of Autoinducer-2 Quorum Sensing Inhibitor on Interspecies Quorum Sensing. Frontiers in Microbiology, 13, 791802 (2022) https://doi.org/10.3389/fmicb.2022.791802
Römling U. Cyclic di-GMP, an established secondary messenger still speeding up. Environmental Microbiology, 14 (8), 1817-1829 (2012) https://doi.org/10.1111/j.1462-2920.2011.02617.x
Săndulescu O, Bleotu C, Matei L, Streinu-Cercel A, Oprea M, Drăgulescu EC, Chifiriuc MC, Rafila A, Pirici D, Tălăpan D, Dorobăţ OM, Neguţ AC, Oţelea D, Berciu I, Ion DA, Codiţă I, Calistru PI, Streinu-Cercel A. Comparative evaluation of aggressiveness traits in staphylococcal strains from severe infections versus nasopharyngeal carriage. Microbial Pathogenesis, 103, 75-83 (2017) https://doi.org/10.1016/j.micpath.2016.11.006
An A, Choi K, Baghela A, Hancock R. An Overview of Biological and Computational Methods for Designing Mechanism-Informed Anti-biofilm Agents. Frontiers in Microbiology, 12, 640787 (2021) https://doi.org/10.3389/fmicb.2021.640787
Corrigan R, Campeotto I, Jeganathan F, Roelofs K, Lee V, Gründling A. Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proceedings of the National Academy of Sciences, 110 (22), 9084-9089 (2013) https://doi.org/10.1073/pnas.1300595110
Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience, 24 (4), 102443 (2021) https://doi.org/10.1016/j.isci.2021.102443
Wexselblatt E, Katzhendler J, Saleem-Batcha R, Hansen G, Hilgenfeld R, Glaser G, Vidavski RR. ppGpp analogues inhibit synthetase activity of Rel proteins from Gram-negative and Gram-positive bacteria. Bioorganic & Medicinal Chemistry, 18 (12), 4485-4497 (2010) https://doi.org/10.1016/j.bmc.2010.04.064
Cascioferro S, Raffa D, Maggio B, Raimondi M, Schillaci D, Daidone G. Sortase A Inhibitors: Recent Advances and Future Perspectives. Journal of Medicinal Chemistry, 58 (23), 9108-9123 (2015) https://doi.org/10.1021/acs.jmedchem.5b00779
Suto M.J., Domagala J.M., Roland G.E., Mailloux G.B., Cohen M.A. Fluoroquinolones: Relationships between Structural Variations, Mammalian Cell Cytotoxicity, and Antimicrobial Activity. Journal of Medicinal Chemistry, 35(25), 4745-4750 (1992) https://doi.org/10.1021/jm00103a013
Published
How to Cite
Issue
Section
Copyright (c) 2025 Tamalika Chakraborty, Sobhanjan Bhunia, Sumana Chatterjee

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.







