154

Journal of Applied Pharmaceutical Research m
Volume 13 Issue 3, Year of Publication 2025, Page 154 — 163

DOI: https://doi.org/10.69857/joapr.v13i3.1107

Check for
updates

Research Article

JOURNAL OF APPLIED PHARMACEUTICAL RESEARCH | JOAPR

www.japtronline.com

ISSN: 2348 — 0335

SPECTROPHOTOMETRIC METHODS FOR DETERMINATION OF NARINGIN,

AMLODIPINE, AND NIFEDIPINE USING CHEMOMETRIC TECHNIQUES
Vishala Rani Baraily*?, Bhupendra Shrestha?, Jithendar Reddy Mandhadi'*

Article Information
Received: 17t March 2025
Revised: 51" May 2025

ABSTRACT
Background: Chemometrics articulates statistical and mathematical aspects to analyse the effectiveness

of chemical data, playing a pivotal role in spectroscopy. Among all the chemometrics techniques, this
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study utilizes the Orthogonal partial least squares (OPLS) model for the simultaneous analysis of
naringin, amlodipine, and nifedipine, a well-established calcium channel blocker. Naringin, a citrus
flavonoid exhibiting notable pharmacological activities. Methodology: This research employs UV-

Keywords visible spectrophotometry in conjunction with the OPLS method for both calibration and prediction sets
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in simultaneous studies of Amlodipine-Naringin and Nifedipine-Naringin, aiming to develop a precise
model for measuring drug concentrations. A linear dynamic range of 5-20 pg/mL was achieved for
standard solutions, while calibration sets were developed using factorial designs. Result and
Discussion: The OPLS model had significant predictive performance with R?values within the range of
0.9947-0.9976 for calibration and 0.9947-0.9985 for prediction, and low root mean square error of cross
validation (RMSECV) values of 0.6191- 0.4353 for NIF-NAR, and 0.3978- 0.4418 for AML-NAR,
indicating robust model performance. The model validation process, using Hotelling’s T2 test, DModx,
established no significant outliers, and permutation analysis validated the model’s reliable fit. The
recovery studies showed values close to 100%, thus verifying the effectiveness of the methodology.
Conclusion: The research demonstrated OPLS (Orthogonal Partial Least Squares) as a powerful
solution for resolving overlapping spectral data, providing high-precision drug analysis with minimal
interference. The development of chemometrics methods demonstrated efficiency and precision in
pharmaceutical analysis while also offering cost-effectiveness for quality control and formulation

development.

INTRODUCTION analysis and optimize the information derived from chemical
Chemometrics combines statistical and mathematical techniques data, which entails the application of multivariate mathematical

to analyze chemical data quantitatively across multiple  ang statistical approaches for data assessment [2]. This further
disciplines [1]. The statistical methods provide informative  getermines the inter-object links, facilitates pattern recognition
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for classification, and enables the prediction of new and
unclassified objects [3]. From the mid-1970s [4], chemometrics
has become a key element in spectroscopy and related analytical
fields through its capability to process multivariate data
effectively. The field has developed further due to advances in
computational technology and the creation of sophisticated
instruments that produce multivariate responses [5] [6] [7].
Orthogonal Partial Least Squares (OPLS) stand out among
chemometric methods due to their widespread use in
multivariate calibration [8] [9] [10] [11], which boosts
classification precision by reducing systematic variations that do
not correlate with sample composition [12] [13]. The strength of
the OPLS method has been demonstrated through its
applications in modeling complex relationships involving
overlapping orthogonal variations of analytical difficulties, such
as calibration transfers and detection limits [14] [15]. OPLS
facilitates interpretation by separating the variation, such as the
descriptor variables, into two components: “predictive”
variation associated with the response and “orthogonal”
variation not associated with the response. OPLS is applicable
even when the number of observations is less than the number
of variables; thus, it can tolerate correlated variables, noisy
variables, and missing values. This string-adaptable technique
finds application in a broad variety of analytical tasks, such as
regression [16] [17] [18]. Thus, this study explored and validated
chemometric  techniques that enabled scientists to
simultaneously analyse Naringin with Amlodipine and Naringin
with Nifedipine conveniently.

Naringin (NAR), a citrus flavonoid [19], as shown in Figure 1
(@), is chemically 4’,5’,7-trinydroxy flavanone-7-B-L-
rhamnoglucoside, a flavanone glycoside [20] [21]. Naringin is
quoted as the “Bitter principle” for the grape family. Naringin
exhibits notable biological and pharmacological properties,
including antioxidant, anti-carcinogenic, and anti-diabetic
properties, as well as the ability to inhibit several cytochrome
P450 enzymes [22], such as CYP3A4 and CYP1A2 [23], which
may potentially result in various in vitro drug interactions.

Nifedipine (NIF), a dihydropyridine subclass calcium channel
blocker, as shown in Figure 1(b), is primarily used as an
antihypertensive agent [24], a calcium channel blocker that is
responsive to various cardiovascular disorders, including
chronic hypertension and angina pectoris. NIF and other
dihydropyridines [25] are primarily considered selective for the

L-type calcium channel and may have a nonspecific action
towards additional voltage-dependent calcium channels [26]. It
undergoes hepatic metabolism via the CYP3A4 pathway.

Amlodipine (AML), an oral dihydropyridine calcium channel
blocker depicted in Fig. 1(c), maintains efficacy by inhibiting
voltage-dependent L-type calcium channels [27]. This impact
impedes the first calcium influx, distinguishing it within its
pharmacological classification. AML undergoes significant
hepatic metabolism to form inactive metabolites [28].
Cytochrome P-450 (CYP) enzymes CYP3A4 [29] and CYP3A5
[30] are substantial in the metabolism of amlodipine [31]. The
history of calcium channel blockers such as Diltiazem and
Verapamil, along with their relationship to naringin, has been
thoroughly researched [32] [33]. The study highlighted their
interactions, which affected the bioavailability of the drugs when
used concomitantly with Naringin by inhibiting the Cytochrome
P450 enzyme, specifically CYP3A4. Thus, this established
interaction helped expand the study to include Dihydropyridine
calcium channel blockers, such as Amlodipine (AML) and
Nifedipine (NIF). As both drugs overlap the metabolic pathways
of VER and DIL, an exploration of possible pharmacokinetic
interactions and their effects on drug bioavailability, which is
clinically essential for efficacy and safety, has been pursued.
With this background, the current study aims to create a novel
chemometric strategy using OPLS in UV-Visible spectroscopy
to evaluate the simultaneous use of NAR with AML and NAR
with NIF. It demonstrates the first-time application of OPLS for
resolving overlapping spectral data in such a dual system, while
also establishing a robust statistical framework for model
validation. This study presents a cost—effective, precise, and
interference-minimized method with high potential for
pharmaceutical quality control and formulation development.

MATERIALS AND METHODS
All the chemicals, NAR, AML, and NIF, were of high grade and

were purchased from Yarrow Chem Products in Mumbai, with
purity levels exceeding > 99%. Milli Q was the source of water
for its optimum quality, while Methanol (AR Grade) was
acquired from S.D. Fine Chemicals Ltd. in Mumbai. The other
ingredients and reagents were all commercially available and of
AR quality. A UV-visible spectrophotometer (Shimadzu-Kyoto,
Japan, Model 1800, double-beam with corresponding 1 cm
pathlength quartz cells) was employed to quantify AML, NIF,
and NAR at wavelengths ranging from 200 to 400 nm, using
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methanol as the solvent. The moieties' unique properties were
their molar absorptivity, melting temperature, and solubility,
which were their distinguishing characteristics. To establish the
orthogonal partial least squares (OPLS) model, the process was
carried out using the UV-Visible technique with software UV
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Probe 2.34 and SIMCA (Sartorius, version 17, running on
Windows 10 Pro). This methodology fulfilled the criteria
established by the International Conference on Harmonisation

Figure 1: Structures of the different compounds, a) NAR, b) NIF, c) AML

PREPARATION OF STANDARD SOLUTION

After precisely weighing 10.0 mg of NAR and AML each, the
stock solution was prepared by dissolving AML in 10.0 mL of
methanol and adjusting the volume using the same solvent
system. The stock solutions of AML and NAR were prepared at
varying concentrations ranging from 5 to 20 pug/mL. The zero-
order spectra were obtained at wavelengths ranging from 200 to
400 nm, in comparison to a blank solution, and accurately
weighed 10.0 mg of NAR and NIF, respectively. The stock
solution was prepared by dissolving the NIF in 10 mL of
methanol, followed by the addition of the necessary volume
using the same solvent. NAR and NIF stock solutions were
formulated with concentrations varying from 5 to 20 pg/mL. The
zero-order spectra were acquired at wavelengths between 200
and 400 nm relative to a blank solution

ONE COMPONENT CALIBRATION

The spectral absorption for the linear dynamic range (LDR) was
measured at 200-400 nm by adding different concentrations of
stock solutions to a 10.0 mL volumetric flask, using methanol to
make up the volume. The absorbance vs. concentration graph
analyzed the LDR, which was determined to be between 1 and
50 pg/mL.

(ICH) for analytical standards [34], including linearity,
precision, and accuracy.
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STANDARD CALIBRATION AND PREDICTION

SAMPLES SET OF AML- NAR AND NIF- NAR

The method by Sonawane et al. [35] was further modified, where
the NAR was combined with AML in several different
proportions, corresponding to their linear concentration ranges,
to create calibration and prediction mixes. A traditional factorial
design with two factors and four levels each was used to
determine the concentration of the calibration set. In contrast, a
design with two factors and three levels each was used for the
prediction set. Nine prediction mixes and sixteen calibration
mixes were produced separately. The different sets, i.e.,
calibration (5-20 pg/mL) and a prediction set of three-
component combinations (2.5-15 pg/mL), were created as
shown in Table 1. A weighed amount of powder equivalent to
10.0 mg was added to a 10.0 mL volumetric flask for analysis.
Methanol was used to dissolve the powder and bring the sample
volume to 10.0 mL. 2.5 mL of the sample was pipetted out from
the stock solution (10.0 mg/10.0 mL), which was then poured
into a 25 mL volumetric flask. The sample was further analyzed
at 200-400 nm at 1-nm intervals, compared to the blank
methanol. The amount of methanol was subsequently modified
to meet the AML-NAR and NIF-NAR standards of the
calibration and prediction samples set. These sets were created
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using the multilevel, multi-factor design. All these data were
analysed in the UV Probe and imported to SIMCA 17 for data

analysis. Further, a calibration model was constructed. Recovery
and mean recovery calculations were also performed.

Table 1: Different concentrations of AML-NAR and NIF-NAR used as calibration and prediction sets in the OPLS method

of analysis.
Sl no. Calibration Prediction Calibration Prediction
AML NAR AML NAR NIF NAR NIF NAR
(ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL)

1. 20 5 9 12.5 20 5 9 12.5

2. 1 10 15 12.5 1 10 15 12.5

3. 20 10 9 2.5 20 10 9 2.5

4, 20 20 15 2.5 20 20 15 25

5. 10 1 125 10 3 125

6. 10 5 7.5 10 7.5

7. 10 10 3 7.5 10 10 3 7.5

8. 5 10 15 7.5 5 10 15 7.5

9. 20 3 2.5 20 3 25

10. 20 1 20 1

11. 20 5 20

12, 5

13. 1

14, 10 20 10 20

15. 1

16. 5 5

PRE-PROCESSING

A methodical preprocessing approach has been employed in this
research to enhance the accuracy and reliability of the
chemometric analysis. The analysis was recorded using UV-Vis
spectroscopy over the range of 200-400 nm at an interval of 1
nm. A Shimadzu 1800 double-beam spectrophotometer was
used, with methanol as the solvent system. The raw data set was
then transferred into SIMCA (version 17). Firstly, the dataset
was standardized using an automated scaling. Different filters,
including Moving Average (MA), Norris Derivative (NA),
Exponentially Weighted Moving Average (EWMA), and
Savitsky-Golay (SG), were used. Still, they didn’t result in
removing the noise, as a result of which out of all the filters, the
SG-EWMA (Savitsky-Golay Exponentially Weighted Moving
Average) filter was applied, which excluded the spectrum
overlap, particularly at the range of 207-332nm, which enhanced
the model performance and signal quality. Furthermore, the
dataset was evaluated for overfitting and processed for cross-
validation to determine the model's robustness. Thus, the
calibration and the prediction sets were developed. After

building the OPLS model (orthogonal projection to latent
structure), statistical tests, including Hotelling’s T2, DModx,
Score, and permutation analysis, were performed to validate the
results further. The high spectral resolution facilitated the
obtaining of easier minute spectral variations, providing precise
and reproducible analysis.

BUILDING AN OPLS MODEL

A multivariate calibration technique, formulated by Abdallah FF
et al. [36] and Rios-Reina et al. [37] using the OPLS method of
analysis, was further modified by employing different filter
derivatives to mitigate overlap among the pharmaceuticals under
study. During preprocessing, the calibration set data were
automatically scaled for use in the OPLS filter, primarily the
Savitzky-Golay Exponentially Weighted Moving Average (SG-
EWMA), where the concentration range was taken from 207 to
332 nm. The cross-validation procedure involved omitting
samples and subsequently analysing the remaining data. The
optimal quantity of the module is crucial for the OPLS
methodology; excessive components introduce noise, while
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insufficient components diminish it. The established model,
developed through the OPLS method, helped characterize the

-

latent variables. A calibration plot is generated by juxtaposing
the anticipated concentrations with the actual concentrations.

Observed vs. Predicted - sg ewma (M1, OPLS)

Figure 2: Observation Vs Prediction of AML and NAR using SG EWMA filters.
Note: OPLS models with SG-EWMA preprocessing are illustrated in the calibration figure, which helps clarify the correlation between the actual
and predicted concentrations of AML and NAR. The predictive accuracy of the model is determined by its high degree of linearity (R2 > 0.99) [38].

ASSAY OF SYNTHETIC MIXTURE OF AML-NAR AND
NIF-NAR:

To prepare the synthetic mixture, a calibrated 10.0 mL
volumetric flask was filled with AML-NAR in a 1:1 powder
ratio, equivalent to 10.0 mg, for the analysis, which was then
further dissolved in methanol. 2.5 mL was pipetted out of the
prepared stock solution (10.0 mg/10.0 mL) and put into a 25 mL
volumetric flask (100 pg/mL), which was then further diluted
with methanol. From the prepared solution, further
concentrations were formed and analysed. Similarly, the
synthetic combination of NIF and NAR was also established.

MODEL VALIDATION
The weak, moderate outliers were all identified with the help of
parameters like Hotelling’s T2 [39] test and DModX [40], which

would also confirm the lack of outliers. Hotelling’s T2, a
multivariate extension of the classical Student t-test, measured
the distance of each observation from the model centre. In this
study, all data for both the AML-NAR and NIF-NAR models
fell within the 95% confidence ellipse, indicating that no
significant outliers were present. DModX values were below the
Critical limit, confirming that the samples fit well within the
established model. Permutation analysis assesses the robustness
and statistical significance of the model. The study revealed that
all permuted Q? values were negative, whereas R? values were
about 1 or lower, validating that the model was not overfitted
and has real predictive power [38]. The score plot enables the
observation of all samples located within Hotelling’s range. The
result of the two models, i.e., AML-NAR and NIF-NAR, was
effective as each optimization approach satisfied the criteria.
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The Score representation, DModx, permutation plot, and
Hotelling’s range are illustrated in the aforementioned figures
for both the calibration and prediction sets. All experimental
including

procedures, calibration and prediction set

preparations, as well as all analytical measurements, were
carried out in triplicate to ensure the reproducibility, reliability,
and statistical robustness of the results determined through the
chemometric validation procedure.

Figure 3: DModX plot for each observation in the OPLS model.
Note: DModX plot of the OPLS model determines how well the samples fit the model. There are no noticeably outlying values as the sample falls

within the critical level of 0.05 [41].

STATISTICAL PARAMETERS

The model of regression can be characterized in various ways.
To determine the RMSECV, RMSEP, and R? values, the OPLS
technique was applied to the validation dataset corresponding to
the specified combination. An acceptable range was identified
for the mean percent recovery of the various medication
combinations, as well as the validation of the calibration
parameters. Standardized medications were incorporated into
the exact amounts of a synthetic combination with a specified
concentration for recovery trials. Standard working solutions of
predetermined volumes were added. Once the sample volume or
concentration for addition was specified. Methanol was
subsequently introduced into the flask.

The recovery of the medications in the mixtures was evaluated
using chemometric techniques. The root mean square deviation
was also assessed using the OPLS technique. The results of the
recovery research showed that the procedures were validated, as
the recovery study achieved nearly 100% recovery, and the
percentage root mean square deviation (RSD) was less than 2%.
For both drugs in the prediction set, it can be concluded that
OPLS, the optimized approach, is successful, proving its
effectiveness and potent predictive power.

71])/sg ewma (M1, OPLS)
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Scaled proportionally to R2X, R2X[1] = 0.823, R2X([2] = 0.176
Figure 4: 3D score plot from OPLS analysis showing the
distribution of 16 sample sets.

Note: A score plot evaluates the degree of separation between various
sample classes and helps decipher the data's underlying structure [38].

Journal of Applied Pharmaceutical Research (JOAPR)| May — June 2025 | Volume 13 Issue 3 | 159



Journal of Applied Pharmaceutical Research 13 (3); 2025: 25 — 37

Mandhadi et al.

RESULTS AND DISCUSSION
Table 2: Statistical parameters for the OPLS method for

AML-NAR and NIF-NAR (Calibration and Prediction set).

SETS DRUGS R2 RMSECV | RMSEE
AML 0.9963 0.5266 0.4818

NAR 0.9947 0.6081 0.5718

Calibration NIF 0.9935 0.7034 0.6613
NAR 0.9976 0.4051 0.5718

AML 0.9978 0.3978 0.4083

NAR 0.9982 0.4418 0.3929

Prediction NIF 0.9974 0.6191 0.4872
NAR 0.9985 0.4353 0.4199

Table 3: Representation of prediction outcomes from the
OPLS model for NAR and AML in the Prediction datasets,
along with the % recovery of the model.

AML NAR
Known . Known .
Predict % Predict %
concentra concentra
. ed recove . ed recove
tion tion
value ry value ry
(Mg/mL) (Mg/mL)
20 19.7 98 5 5.2 104
20 19.2 96 20 19.1 95
10 9.9 99 1 0.9 95
10 9.6 96 10 9.6 96
1 0.9 97 20 19.1 95
20 19.9 99 1 09 91
5 4.9 98 1 0.9 95
1 0.9 99 5 5.0 100
5 45 91 5 5.2 104

The predicted values closely match the actual concentration,
demonstrating the model’s precision and accuracy.

Table 4: Analytical parameters (LOD, LOQ, SD, SE) for
NAR, NIF and AML

NAR NIF AML

Standard Error 0.003 0.002 0.004
Standard Deviation 0.007 0.006 0.011
LOD (ug/mL) 2.092 1.753 1.861
LOQ (ug/mL) 6.338 5.312 5.639

The current study demonstrates the effectiveness of OPLS
chemometric-assisted ~ UV-visible  spectrophotometry in
simultaneously  determining  Naringin-Amlodipine  and

Naringin-Nifedipine in synthetic mixtures. This chemometric
method effectively addresses the challenges posed by traditional
univariate spectrophotometric techniques [42], such as spectral
overlap, which significantly enhances the accuracy of
quantifying multiple components in a single analysis. It also
improves sensitivity to experimental conditions, selectivity, and
detection limits [43] [44] [45]. Calibration and prediction set
design were a critical aspect of this analysis. As shown in Table
1, a comprehensive range of concentrations for both AML-NAR
and NIF-NAR combinations was systematically selected,
ensuring coverage across the linear dynamic range (5-20 pg/mL
for calibration and 2.5-15 pg/mL for the prediction set). The
present work was optimized using Savitzky-Golay and EWMA
filters, which helped to resolve the issue of overlapping and
enabled an accurate unfolding of each analyte’s contributions.
We validated the OPLS models using statistical measures,
including R2 (the coefficient of determination), RMSECV (Root
Mean Square Error of Cross-Validation), and RMSEE (Root
Mean Square Error of Estimation), for both calibration and
prediction sets. The impressive R2 values of over 0.99 for both
the calibration and prediction sets demonstrate the model's
strength. In contrast, the low RMSECV and RMSEE values,
both below 0.99, indicate that errors are minimal and the
predictive power is substantial. The lower values of RMSECV
suggested that the model was not overfitted and was capable of
accurately predicting new, unseen samples. Additionally,
validation parameters like Hotelling’s T2 test and DModX
analysis were used to confirm that no significant outliers were
skewing the model's performance, as all data points fell within
the 95% confidence ellipse and below the critical DModX limits
[46]. Permutation analysis further supported the model's
reliability, revealing that the fitting wasn't just a fluke, as all
permuted Q2 values were negative and R2 values stayed close to
1. The recovery studies, which produced results of 100%, further
validated the model's accuracy and precision. The average
recovery percentages and percentage root mean square deviation
(RSD < 2%) [47] fell well within the acceptable analytical range,
making this method a novel fit for pharmaceutical applications.
This method showed a consistent linear response across the
AML-NAR and NIF-NAR concentration ranges of 5-20
(ng/mL) with correlation values ranging from 0.9947-0.9963
and 0.9935-0.9976, respectively. Higher linearity indicated that
the model could generalize across various sample compositions
and concentration ranges, making it a robust one. With mean
recoveries of 98.7% for AML and 99.2% for NIF in synthetic
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combination, recovery investigations confirmed the approach.
All the parameter results were within the range of ICH
guidelines, which benefits the present OPLS approach for

reducing noise, managing interferents, and enhancing
exploratory data analysis, particularly for complex
pharmaceutical mixtures. When compared to traditional

spectrophotometric methods [48], this approach significantly
lessens interference effects and boosts the reliability of
simultaneous drug quantification. However, the limit of
detection (LOD) and Limit of quantitation (LOQ) values were
relatively high; as such, the application of the particular method
was limited to pharmaceutical formulation and its utility on
biological matrices.

CONCLUSION
In searching for weak and moderate outliers, Hotelling’s T? test

and DModX encountered no deviance, suggesting that no
outliers were detected (24). All of the permuted Q? values were
less than 0, and R? values were less than or equal to 1, as shown
by the permutation analysis. The model fitting was probably
correct, as Q% and R? [49] were less than the initial values.
Looking at the score plot, we can observe all the samples that
are inside Hotelling’s range.

This leads us to believe that the model is effective, as all
optimization strategies meet the specified criteria. At long last,
we may make educated guesses on the repeatability of the
approaches based on the outcomes of several evaluations. There
was no deviation from the ICH standards in any of the above
analyses. The cost-effectiveness, multicomponent analysis, and
the removal of interface overlap in the overlapping UV spectra
for NAR, AML, and NIF were all considered significant
advantages of the OPLS method, which allows for the precise
determination of all three compounds. This method provided
adequate sensitivity in the 5-20 (ug/mL) range, which is ideal for
pharmaceutical manufacturing quality control.

Lastly, it should be noted that although the techniques achieved
excellent results in pharmaceutical formulations, they have a
restricted application in biological matrices, such as plasma, due
to relatively high LOD and LOQ values, which could likely arise
from increased matrix complexity or spectral interferences in the
biological samples. Subsequent work on lowering these limits
may improve the capability of accurately measuring the
compounds of interest in biological specimens.
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