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Article Information  ABSTRACT 
Received: 17th March 2025  Background: Chemometrics articulates statistical and mathematical aspects to analyse the effectiveness 

of chemical data, playing a pivotal role in spectroscopy. Among all the chemometrics techniques, this 

study utilizes the Orthogonal partial least squares (OPLS) model for the simultaneous analysis of 

naringin, amlodipine, and nifedipine, a well-established calcium channel blocker. Naringin, a citrus 

flavonoid exhibiting notable pharmacological activities. Methodology: This research employs UV-

visible spectrophotometry in conjunction with the OPLS method for both calibration and prediction sets 

in simultaneous studies of Amlodipine–Naringin and Nifedipine–Naringin, aiming to develop a precise 

model for measuring drug concentrations. A linear dynamic range of 5-20 µg/mL was achieved for 

standard solutions, while calibration sets were developed using factorial designs. Result and 

Discussion: The OPLS model had significant predictive performance with R2 values within the range of 

0.9947-0.9976 for calibration and 0.9947-0.9985 for prediction, and low root mean square error of cross 

validation (RMSECV) values of 0.6191- 0.4353 for NIF-NAR, and 0.3978- 0.4418 for AML-NAR, 

indicating robust model performance. The model validation process, using Hotelling’s T2 test, DModx, 

established no significant outliers, and permutation analysis validated the model’s reliable fit. The 

recovery studies showed values close to 100%, thus verifying the effectiveness of the methodology. 

Conclusion: The research demonstrated OPLS (Orthogonal Partial Least Squares) as a powerful 

solution for resolving overlapping spectral data, providing high-precision drug analysis with minimal 

interference. The development of chemometrics methods demonstrated efficiency and precision in 

pharmaceutical analysis while also offering cost-effectiveness for quality control and formulation 

development. 
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INTRODUCTION 
Chemometrics combines statistical and mathematical techniques 
to analyze chemical data quantitatively across multiple 
disciplines [1]. The statistical methods provide informative 
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analysis and optimize the information derived from chemical 
data, which entails the application of multivariate mathematical 
and statistical approaches for data assessment [2]. This further 
determines the inter-object links, facilitates pattern recognition 
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for classification, and enables the prediction of new and 
unclassified objects [3]. From the mid-1970s [4], chemometrics 
has become a key element in spectroscopy and related analytical 
fields through its capability to process multivariate data 
effectively. The field has developed further due to advances in 
computational technology and the creation of sophisticated 
instruments that produce multivariate responses [5] [6] [7]. 
Orthogonal Partial Least Squares (OPLS) stand out among 
chemometric methods due to their widespread use in 
multivariate calibration [8] [9] [10] [11], which boosts 
classification precision by reducing systematic variations that do 
not correlate with sample composition [12] [13]. The strength of 
the OPLS method has been demonstrated through its 
applications in modeling complex relationships involving 
overlapping orthogonal variations of analytical difficulties, such 
as calibration transfers and detection limits [14] [15]. OPLS 
facilitates interpretation by separating the variation, such as the 
descriptor variables, into two components: “predictive” 
variation associated with the response and “orthogonal” 
variation not associated with the response. OPLS is applicable 
even when the number of observations is less than the number 
of variables; thus, it can tolerate correlated variables, noisy 
variables, and missing values. This string-adaptable technique 
finds application in a broad variety of analytical tasks, such as 
regression [16] [17] [18]. Thus, this study explored and validated 
chemometric techniques that enabled scientists to 
simultaneously analyse Naringin with Amlodipine and Naringin 
with Nifedipine conveniently. 
 
Naringin (NAR),  a citrus flavonoid [19], as shown in Figure  1 
(a), is chemically 4’,5’,7-trihydroxy flavanone-7-β-L-
rhamnoglucoside, a flavanone glycoside [20] [21]. Naringin is 
quoted as the “Bitter principle” for the grape family. Naringin 
exhibits notable biological and pharmacological properties, 
including antioxidant, anti-carcinogenic, and anti-diabetic 
properties, as well as the ability to inhibit several cytochrome 
P450 enzymes [22], such as CYP3A4 and CYP1A2 [23], which 
may potentially result in various in vitro drug interactions.  
 
Nifedipine (NIF), a dihydropyridine subclass calcium channel 
blocker, as shown in Figure 1(b), is primarily used as an 
antihypertensive agent [24], a calcium channel blocker that is 
responsive to various cardiovascular disorders, including 
chronic hypertension and angina pectoris. NIF and other 
dihydropyridines [25] are primarily considered selective for the 

L-type calcium channel and may have a nonspecific action 
towards additional voltage-dependent calcium channels [26].  It 
undergoes hepatic metabolism via the CYP3A4 pathway.                                             
 
Amlodipine (AML), an oral dihydropyridine calcium channel 
blocker depicted in Fig. 1(c), maintains efficacy by inhibiting 
voltage-dependent L-type calcium channels [27]. This impact 
impedes the first calcium influx, distinguishing it within its 
pharmacological classification. AML undergoes significant 
hepatic metabolism to form inactive metabolites [28]. 
Cytochrome P-450 (CYP) enzymes CYP3A4 [29] and CYP3A5 
[30] are substantial in the metabolism of amlodipine [31]. The 
history of calcium channel blockers such as Diltiazem and 
Verapamil, along with their relationship to naringin, has been 
thoroughly researched [32] [33]. The study highlighted their 
interactions, which affected the bioavailability of the drugs when 
used concomitantly with Naringin by inhibiting the Cytochrome 
P450 enzyme, specifically CYP3A4.  Thus, this established 
interaction helped expand the study to include Dihydropyridine 
calcium channel blockers, such as Amlodipine (AML) and 
Nifedipine (NIF). As both drugs overlap the metabolic pathways 
of VER and DIL, an exploration of possible pharmacokinetic 
interactions and their effects on drug bioavailability, which is 
clinically essential for efficacy and safety, has been pursued. 
With this background, the current study aims to create a novel 
chemometric strategy using OPLS in UV-Visible spectroscopy 
to evaluate the simultaneous use of NAR with AML and NAR 
with NIF. It demonstrates the first-time application of OPLS for 
resolving overlapping spectral data in such a dual system, while 
also establishing a robust statistical framework for model 
validation. This study presents a cost–effective, precise, and 
interference-minimized method with high potential for 
pharmaceutical quality control and formulation development. 
  
MATERIALS AND METHODS 
All the chemicals, NAR, AML, and NIF, were of high grade and 
were purchased from Yarrow Chem Products in Mumbai, with 
purity levels exceeding > 99%. Milli Q was the source of water 
for its optimum quality, while Methanol (AR Grade) was 
acquired from S.D. Fine Chemicals Ltd. in Mumbai. The other 
ingredients and reagents were all commercially available and of 
AR quality. A UV-visible spectrophotometer (Shimadzu-Kyoto, 
Japan, Model 1800, double-beam with corresponding 1 cm 
pathlength quartz cells) was employed to quantify AML, NIF, 
and NAR at wavelengths ranging from 200 to 400 nm, using 
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methanol as the solvent. The moieties' unique properties were 
their molar absorptivity, melting temperature, and solubility, 
which were their distinguishing characteristics. To establish the 
orthogonal partial least squares (OPLS) model, the process was 
carried out using the UV-Visible technique with software UV 

Probe 2.34 and SIMCA (Sartorius, version 17, running on 
Windows 10 Pro). This methodology fulfilled the criteria 
established by the International Conference on Harmonisation 
(ICH) for analytical standards [34], including linearity, 
precision, and accuracy.

Figure 1: Structures of the different compounds, a) NAR, b) NIF, c) AML 
 

PREPARATION OF STANDARD SOLUTION 
After precisely weighing 10.0 mg of NAR and AML each, the 
stock solution was prepared by dissolving AML in 10.0 mL of 
methanol and adjusting the volume using the same solvent 
system. The stock solutions of AML and NAR were prepared at 
varying concentrations ranging from 5 to 20 µg/mL. The zero-
order spectra were obtained at wavelengths ranging from 200 to 
400 nm, in comparison to a blank solution, and accurately 
weighed 10.0 mg of NAR and NIF, respectively. The stock 
solution was prepared by dissolving the NIF in 10 mL of 
methanol, followed by the addition of the necessary volume 
using the same solvent. NAR and NIF stock solutions were 
formulated with concentrations varying from 5 to 20 µg/mL. The 
zero-order spectra were acquired at wavelengths between 200 
and 400 nm relative to a blank solution 
   
ONE COMPONENT CALIBRATION  
The spectral absorption for the linear dynamic range (LDR) was 
measured at 200-400 nm by adding different concentrations of 
stock solutions to a 10.0 mL volumetric flask, using methanol to 
make up the volume. The absorbance vs. concentration graph 
analyzed the LDR, which was determined to be between 1 and 
50 µg/mL.  

STANDARD CALIBRATION AND PREDICTION 
SAMPLES SET OF AML- NAR AND NIF- NAR 
The method by Sonawane et al. [35] was further modified, where 
the NAR was combined with AML in several different 
proportions, corresponding to their linear concentration ranges, 
to create calibration and prediction mixes. A traditional factorial 
design with two factors and four levels each was used to 
determine the concentration of the calibration set. In contrast, a 
design with two factors and three levels each was used for the 
prediction set. Nine prediction mixes and sixteen calibration 
mixes were produced separately. The different sets, i.e., 
calibration (5-20 μg/mL) and a prediction set of three-
component combinations (2.5-15 μg/mL), were created as 
shown in Table 1. A weighed amount of powder equivalent to 
10.0 mg was added to a 10.0 mL volumetric flask for analysis. 
Methanol was used to dissolve the powder and bring the sample 
volume to 10.0 mL. 2.5 mL of the sample was pipetted out from 
the stock solution (10.0 mg/10.0 mL), which was then poured 
into a 25 mL volumetric flask. The sample was further analyzed 
at 200-400 nm at 1-nm intervals, compared to the blank 
methanol. The amount of methanol was subsequently modified 
to meet the AML-NAR and NIF-NAR standards of the 
calibration and prediction samples set. These sets were created 
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using the multilevel, multi-factor design. All these data were 
analysed in the UV Probe and imported to SIMCA 17 for data 

analysis. Further, a calibration model was constructed. Recovery 
and mean recovery calculations were also performed. 

Table 1: Different concentrations of AML-NAR and NIF-NAR used as calibration and prediction sets in the OPLS method 
of analysis. 

Sl no. Calibration Prediction Calibration Prediction 
AML 

(μg/mL) 
NAR AML 

(μg/mL) 
NAR 

(μg/mL) 
NIF 

(μg/mL) 
NAR 

(μg/mL) 
NIF 

(μg/mL) 
NAR 

(μg/mL) 
1. 20 5 9 12.5 20 5 9 12.5 
2. 1 10 15 12.5 1 10 15 12.5 
3. 20 10 9 2.5 20 10 9 2.5 
4. 20 20 15 2.5 20 20 15 2.5 
5. 10 1 3 12.5 10 1 3 12.5 
6. 10 5 9 7.5 10 5 9 7.5 
7. 10 10 3 7.5 10 10 3 7.5 
8. 5 10 15 7.5 5 10 15 7.5 
9. 1 20 3 2.5 1 20 3 2.5 

10. 20 1   20 1   
11. 5 20   5 20   
12. 5 1   5 1   
13. 1 1   1 1   
14. 10 20   10 20   
15. 1 5   1 5   
16. 5 5   5 5   

 
PRE-PROCESSING  
A methodical preprocessing approach has been employed in this 
research to enhance the accuracy and reliability of the 
chemometric analysis.  The analysis was recorded using UV-Vis 
spectroscopy over the range of 200-400 nm at an interval of 1 
nm. A Shimadzu 1800 double-beam spectrophotometer was 
used, with methanol as the solvent system. The raw data set was 
then transferred into SIMCA (version 17). Firstly, the dataset 
was standardized using an automated scaling. Different filters, 
including Moving Average (MA), Norris Derivative (NA), 
Exponentially Weighted Moving Average (EWMA), and 
Savitsky-Golay (SG), were used. Still, they didn’t result in 
removing the noise, as a result of which out of all the filters, the 
SG-EWMA (Savitsky-Golay Exponentially Weighted Moving 
Average) filter was applied, which excluded the spectrum 
overlap, particularly at the range of 207-332nm, which enhanced 
the model performance and signal quality. Furthermore, the 
dataset was evaluated for overfitting and processed for cross-
validation to determine the model's robustness.  Thus, the 
calibration and the prediction sets were developed. After 

building the OPLS model (orthogonal projection to latent 
structure), statistical tests, including Hotelling’s T2, DModx, 
Score, and permutation analysis, were performed to validate the 
results further. The high spectral resolution facilitated the 
obtaining of easier minute spectral variations, providing precise 
and reproducible analysis. 
 
BUILDING AN OPLS MODEL 
A multivariate calibration technique, formulated by Abdallah FF 
et al. [36] and Ríos-Reina et al. [37] using the OPLS method of 
analysis, was further modified by employing different filter 
derivatives to mitigate overlap among the pharmaceuticals under 
study. During preprocessing, the calibration set data were 
automatically scaled for use in the OPLS filter, primarily the 
Savitzky-Golay Exponentially Weighted Moving Average (SG-
EWMA), where the concentration range was taken from 207 to 
332 nm. The cross-validation procedure involved omitting 
samples and subsequently analysing the remaining data. The 
optimal quantity of the module is crucial for the OPLS 
methodology; excessive components introduce noise, while 
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insufficient components diminish it. The established model, 
developed through the OPLS method, helped characterize the 

latent variables. A calibration plot is generated by juxtaposing 
the anticipated concentrations with the actual concentrations. 

 

 
Figure 2: Observation Vs Prediction of AML and NAR using SG EWMA filters. 

Note: OPLS models with SG-EWMA preprocessing are illustrated in the calibration figure, which helps clarify the correlation between the actual 
and predicted concentrations of AML and NAR. The predictive accuracy of the model is determined by its high degree of linearity (R² > 0.99) [38]. 
 
ASSAY OF SYNTHETIC MIXTURE OF AML-NAR AND 
NIF-NAR: 
To prepare the synthetic mixture, a calibrated 10.0 mL 
volumetric flask was filled with AML-NAR in a 1:1 powder 
ratio, equivalent to 10.0 mg, for the analysis, which was then 
further dissolved in methanol. 2.5 mL was pipetted out of the 
prepared stock solution (10.0 mg/10.0 mL) and put into a 25 mL 
volumetric flask (100 μg/mL), which was then further diluted 
with methanol. From the prepared solution, further 
concentrations were formed and analysed. Similarly, the 
synthetic combination of NIF and NAR was also established. 
 
MODEL VALIDATION 
The weak, moderate outliers were all identified with the help of 
parameters like Hotelling’s T2 [39] test and DModX [40], which 

would also confirm the lack of outliers. Hotelling’s T2, a 
multivariate extension of the classical Student t-test, measured 
the distance of each observation from the model centre. In this 
study, all data for both the AML-NAR and NIF-NAR models 
fell within the 95% confidence ellipse, indicating that no 
significant outliers were present. DModX values were below the 
Critical limit, confirming that the samples fit well within the 
established model. Permutation analysis assesses the robustness 
and statistical significance of the model.  The study revealed that 
all permuted Q2 values were negative, whereas R2 values were 
about 1 or lower, validating that the model was not overfitted 
and has real predictive power [38]. The score plot enables the 
observation of all samples located within Hotelling’s range. The 
result of the two models, i.e., AML-NAR and NIF-NAR, was 
effective as each optimization approach satisfied the criteria. 
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The Score representation, DModx, permutation plot, and 
Hotelling’s range are illustrated in the aforementioned figures 
for both the calibration and prediction sets. All experimental 
procedures, including calibration and prediction set 

preparations, as well as all analytical measurements, were 
carried out in triplicate to ensure the reproducibility, reliability, 
and statistical robustness of the results determined through the 
chemometric validation procedure.  

 
Figure 3: DModX plot for each observation in the OPLS model. 

Note: DModX plot of the OPLS model determines how well the samples fit the model. There are no noticeably outlying values as the sample falls 
within the critical level of 0.05 [41]. 
 
STATISTICAL PARAMETERS 
 The model of regression can be characterized in various ways. 
To determine the RMSECV, RMSEP, and R² values, the OPLS 
technique was applied to the validation dataset corresponding to 
the specified combination. An acceptable range was identified 
for the mean percent recovery of the various medication 
combinations, as well as the validation of the calibration 
parameters. Standardized medications were incorporated into 
the exact amounts of a synthetic combination with a specified 
concentration for recovery trials. Standard working solutions of 
predetermined volumes were added. Once the sample volume or 
concentration for addition was specified. Methanol was 
subsequently introduced into the flask.  
 
The recovery of the medications in the mixtures was evaluated 
using chemometric techniques. The root mean square deviation 
was also assessed using the OPLS technique. The results of the 
recovery research showed that the procedures were validated, as 
the recovery study achieved nearly 100% recovery, and the 
percentage root mean square deviation (RSD) was less than 2%. 
For both drugs in the prediction set, it can be concluded that 
OPLS, the optimized approach, is successful, proving its 
effectiveness and potent predictive power. 

 
Figure 4: 3D score plot from OPLS analysis showing the 

distribution of 16 sample sets. 
Note: A score plot evaluates the degree of separation between various 
sample classes and helps decipher the data's underlying structure [38]. 
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RESULTS AND DISCUSSION  
Table 2: Statistical parameters for the OPLS method for 
AML-NAR and NIF-NAR (Calibration and Prediction set). 

SETS DRUGS R2 RMSECV RMSEE 
 AML 0.9963 0.5266 0.4818 
 NAR 0.9947 0.6081 0.5718 

Calibration NIF 0.9935 0.7034 0.6613 
 NAR 0.9976 0.4051 0.5718 
 AML 0.9978 0.3978 0.4083 
 NAR 0.9982 0.4418 0.3929 

Prediction NIF 0.9974 0.6191 0.4872 
 NAR 0.9985 0.4353 0.4199 

 
Table 3: Representation of prediction outcomes from the 
OPLS model for NAR and   AML in the Prediction datasets, 
along with the % recovery of the model.  

AML NAR 
Known 

concentra
tion 

(µg/mL) 

Predict
ed 

value 

% 
recove

ry 

Known 
concentra

tion 
(µg/mL) 

Predict
ed 

value 

% 
recove

ry 

20 19.7 98 5 5.2 104 
20 19.2 96 20 19.1 95 
10 9.9 99 1 0.9 95 
10 9.6 96 10 9.6 96 
1 0.9 97 20 19.1 95 

20 19.9 99 1 0.9 91 
5 4.9 98 1 0.9 95 
1 0.9 99 5 5.0 100 
5 4.5 91 5 5.2 104 

The predicted values closely match the actual concentration, 
demonstrating the model’s precision and accuracy. 
 
Table 4: Analytical parameters (LOD, LOQ, SD, SE) for 
NAR, NIF and AML 

 NAR NIF AML 
Standard Error 0.003 0.002 0.004 

Standard Deviation  0.007 0.006 0.011 
LOD (µg/mL) 2.092 1.753 1.861 
LOQ (µg/mL) 6.338 5.312 5.639 

 
The current study demonstrates the effectiveness of OPLS 
chemometric-assisted UV-visible spectrophotometry in 
simultaneously determining Naringin-Amlodipine and 

Naringin-Nifedipine in synthetic mixtures. This chemometric 
method effectively addresses the challenges posed by traditional 
univariate spectrophotometric techniques [42], such as spectral 
overlap, which significantly enhances the accuracy of 
quantifying multiple components in a single analysis. It also 
improves sensitivity to experimental conditions, selectivity, and 
detection limits [43] [44] [45]. Calibration and prediction set 
design were a critical aspect of this analysis. As shown in Table 
1, a comprehensive range of concentrations for both AML-NAR 
and NIF-NAR combinations was systematically selected, 
ensuring coverage across the linear dynamic range (5-20 µg/mL 
for calibration and 2.5-15 µg/mL for the prediction set). The 
present work was optimized using Savitzky-Golay and EWMA 
filters, which helped to resolve the issue of overlapping and 
enabled an accurate unfolding of each analyte’s contributions. 
We validated the OPLS models using statistical measures, 
including R² (the coefficient of determination), RMSECV (Root 
Mean Square Error of Cross-Validation), and RMSEE (Root 
Mean Square Error of Estimation), for both calibration and 
prediction sets. The impressive R² values of over 0.99 for both 
the calibration and prediction sets demonstrate the model's 
strength. In contrast, the low RMSECV and RMSEE values, 
both below 0.99, indicate that errors are minimal and the 
predictive power is substantial. The lower values of RMSECV 
suggested that the model was not overfitted and was capable of 
accurately predicting new, unseen samples. Additionally, 
validation parameters like Hotelling’s T² test and DModX 
analysis were used to confirm that no significant outliers were 
skewing the model's performance, as all data points fell within 
the 95% confidence ellipse and below the critical DModX limits 
[46]. Permutation analysis further supported the model's 
reliability, revealing that the fitting wasn't just a fluke, as all 
permuted Q² values were negative and R² values stayed close to 
1. The recovery studies, which produced results of 100%, further 
validated the model's accuracy and precision. The average 
recovery percentages and percentage root mean square deviation 
(RSD < 2%) [47] fell well within the acceptable analytical range, 
making this method a novel fit for pharmaceutical applications. 
This method showed a consistent linear response across the 
AML-NAR and NIF-NAR concentration ranges of 5-20 
(μg/mL) with correlation values ranging from 0.9947-0.9963 
and 0.9935-0.9976, respectively. Higher linearity indicated that 
the model could generalize across various sample compositions 
and concentration ranges, making it a robust one. With mean 
recoveries of 98.7% for AML and 99.2% for NIF in synthetic 



Journal of Applied Pharmaceutical Research 13 (3); 2025: 25 – 37  Mandhadi et al.  

 

 
 Journal of Applied Pharmaceutical Research (JOAPR)| May – June 2025 | Volume 13 Issue 3 |  161 

combination, recovery investigations confirmed the approach. 
All the parameter results were within the range of ICH 
guidelines, which benefits the present OPLS approach for 
reducing noise, managing interferents, and enhancing 
exploratory data analysis, particularly for complex 
pharmaceutical mixtures. When compared to traditional 
spectrophotometric methods [48], this approach significantly 
lessens interference effects and boosts the reliability of 
simultaneous drug quantification. However, the limit of 
detection (LOD) and Limit of quantitation (LOQ) values were 
relatively high; as such, the application of the particular method 
was limited to pharmaceutical formulation and its utility on 
biological matrices. 
 
CONCLUSION 
In searching for weak and moderate outliers, Hotelling’s T2 test 
and DModX encountered no deviance, suggesting that no 
outliers were detected (24). All of the permuted Q2 values were 
less than 0, and R2 values were less than or equal to 1, as shown 
by the permutation analysis. The model fitting was probably 
correct, as Q2 and R2 [49] were less than the initial values. 
Looking at the score plot, we can observe all the samples that 
are inside Hotelling’s range.   
 
This leads us to believe that the model is effective, as all 
optimization strategies meet the specified criteria. At long last, 
we may make educated guesses on the repeatability of the 
approaches based on the outcomes of several evaluations. There 
was no deviation from the ICH standards in any of the above 
analyses. The cost-effectiveness, multicomponent analysis, and 
the removal of interface overlap in the overlapping UV spectra 
for NAR, AML, and NIF were all considered significant 
advantages of the OPLS method, which allows for the precise 
determination of all three compounds. This method provided 
adequate sensitivity in the 5-20 (μg/mL) range, which is ideal for 
pharmaceutical manufacturing quality control.  
 
Lastly, it should be noted that although the techniques achieved 
excellent results in pharmaceutical formulations, they have a 
restricted application in biological matrices, such as plasma, due 
to relatively high LOD and LOQ values, which could likely arise 
from increased matrix complexity or spectral interferences in the 
biological samples. Subsequent work on lowering these limits 
may improve the capability of accurately measuring the 
compounds of interest in biological specimens. 
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