

Research Article

JOURNAL OF APPLIED PHARMACEUTICAL RESEARCH | JOAPR

www.japronline.com ISSN: 2348 – 0335

SPECTROPHOTOMETRIC METHODS FOR DETERMINATION OF NARINGIN, AMLODIPINE, AND NIFEDIPINE USING CHEMOMETRIC TECHNIQUES

Vishala Rani Baraily^{1,2}, Bhupendra Shrestha², Jithendar Reddy Mandhadi^{1*}

Article Information

Received: 17th March 2025

Revised: 5th May 2025

Accepted: 24th May 2025

Published: 30th June 2025

Keywords

Chemometrics, Naringin, Nifedipine, Amlodipine, UV-spectroscopy, Orthogonal partial least squares (OPLS)

ABSTRACT

Background: Chemometrics articulates statistical and mathematical aspects to analyse the effectiveness of chemical data, playing a pivotal role in spectroscopy. Among all the chemometrics techniques, this study utilizes the Orthogonal partial least squares (OPLS) model for the simultaneous analysis of naringin, amlodipine, and nifedipine, a well-established calcium channel blocker. Naringin, a citrus flavonoid exhibiting notable pharmacological activities. **Methodology:** This research employs UV-visible spectrophotometry in conjunction with the OPLS method for both calibration and prediction sets in simultaneous studies of Amlodipine–Naringin and Nifedipine–Naringin, aiming to develop a precise model for measuring drug concentrations. A linear dynamic range of 5–20 µg/mL was achieved for standard solutions, while calibration sets were developed using factorial designs. **Result and Discussion:** The OPLS model had significant predictive performance with R^2 values within the range of 0.9947–0.9976 for calibration and 0.9947–0.9985 for prediction, and low root mean square error of cross validation (RMSECV) values of 0.6191–0.4353 for NIF–NAR, and 0.3978–0.4418 for AML–NAR, indicating robust model performance. The model validation process, using Hotelling's T₂ test, DModx, established no significant outliers, and permutation analysis validated the model's reliable fit. The recovery studies showed values close to 100%, thus verifying the effectiveness of the methodology. **Conclusion:** The research demonstrated OPLS (Orthogonal Partial Least Squares) as a powerful solution for resolving overlapping spectral data, providing high-precision drug analysis with minimal interference. The development of chemometrics methods demonstrated efficiency and precision in pharmaceutical analysis while also offering cost-effectiveness for quality control and formulation development.

INTRODUCTION

Chemometrics combines statistical and mathematical techniques to analyze chemical data quantitatively across multiple disciplines [1]. The statistical methods provide informative

analysis and optimize the information derived from chemical data, which entails the application of multivariate mathematical and statistical approaches for data assessment [2]. This further determines the inter-object links, facilitates pattern recognition

¹Assam down town University, Panikhaiti, Guwahati, Assam, 781026, India

²Himalayan Pharmacy Institute, Majhitar, East Sikkim 737136, India

*For Correspondence: jithendar88@gmail.com

©2025 The authors

This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY NC), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers. (<https://creativecommons.org/licenses/by-nc/4.0/>)

for classification, and enables the prediction of new and unclassified objects [3]. From the mid-1970s [4], chemometrics has become a key element in spectroscopy and related analytical fields through its capability to process multivariate data effectively. The field has developed further due to advances in computational technology and the creation of sophisticated instruments that produce multivariate responses [5] [6] [7]. Orthogonal Partial Least Squares (OPLS) stand out among chemometric methods due to their widespread use in multivariate calibration [8] [9] [10] [11], which boosts classification precision by reducing systematic variations that do not correlate with sample composition [12] [13]. The strength of the OPLS method has been demonstrated through its applications in modeling complex relationships involving overlapping orthogonal variations of analytical difficulties, such as calibration transfers and detection limits [14] [15]. OPLS facilitates interpretation by separating the variation, such as the descriptor variables, into two components: “predictive” variation associated with the response and “orthogonal” variation not associated with the response. OPLS is applicable even when the number of observations is less than the number of variables; thus, it can tolerate correlated variables, noisy variables, and missing values. This string-adaptable technique finds application in a broad variety of analytical tasks, such as regression [16] [17] [18]. Thus, this study explored and validated chemometric techniques that enabled scientists to simultaneously analyse Naringin with Amlodipine and Naringin with Nifedipine conveniently.

Naringin (NAR), a citrus flavonoid [19], as shown in Figure 1 (a), is chemically 4',5',7-trihydroxy flavanone-7- β -L-rhamnoglucoside, a flavanone glycoside [20] [21]. Naringin is quoted as the “Bitter principle” for the grape family. Naringin exhibits notable biological and pharmacological properties, including antioxidant, anti-carcinogenic, and anti-diabetic properties, as well as the ability to inhibit several cytochrome P450 enzymes [22], such as CYP3A4 and CYP1A2 [23], which may potentially result in various in vitro drug interactions.

Nifedipine (NIF), a dihydropyridine subclass calcium channel blocker, as shown in Figure 1(b), is primarily used as an antihypertensive agent [24], a calcium channel blocker that is responsive to various cardiovascular disorders, including chronic hypertension and angina pectoris. NIF and other dihydropyridines [25] are primarily considered selective for the

L-type calcium channel and may have a nonspecific action towards additional voltage-dependent calcium channels [26]. It undergoes hepatic metabolism via the CYP3A4 pathway.

Amlodipine (AML), an oral dihydropyridine calcium channel blocker depicted in Fig. 1(c), maintains efficacy by inhibiting voltage-dependent L-type calcium channels [27]. This impact impedes the first calcium influx, distinguishing it within its pharmacological classification. AML undergoes significant hepatic metabolism to form inactive metabolites [28]. Cytochrome P-450 (CYP) enzymes CYP3A4 [29] and CYP3A5 [30] are substantial in the metabolism of amlodipine [31]. The history of calcium channel blockers such as Diltiazem and Verapamil, along with their relationship to naringin, has been thoroughly researched [32] [33]. The study highlighted their interactions, which affected the bioavailability of the drugs when used concomitantly with Naringin by inhibiting the Cytochrome P450 enzyme, specifically CYP3A4. Thus, this established interaction helped expand the study to include Dihydropyridine calcium channel blockers, such as Amlodipine (AML) and Nifedipine (NIF). As both drugs overlap the metabolic pathways of VER and DIL, an exploration of possible pharmacokinetic interactions and their effects on drug bioavailability, which is clinically essential for efficacy and safety, has been pursued. With this background, the current study aims to create a novel chemometric strategy using OPLS in UV-Visible spectroscopy to evaluate the simultaneous use of NAR with AML and NAR with NIF. It demonstrates the first-time application of OPLS for resolving overlapping spectral data in such a dual system, while also establishing a robust statistical framework for model validation. This study presents a cost-effective, precise, and interference-minimized method with high potential for pharmaceutical quality control and formulation development.

MATERIALS AND METHODS

All the chemicals, NAR, AML, and NIF, were of high grade and were purchased from Yarrow Chem Products in Mumbai, with purity levels exceeding > 99%. Milli Q was the source of water for its optimum quality, while Methanol (AR Grade) was acquired from S.D. Fine Chemicals Ltd. in Mumbai. The other ingredients and reagents were all commercially available and of AR quality. A UV-visible spectrophotometer (Shimadzu-Kyoto, Japan, Model 1800, double-beam with corresponding 1 cm pathlength quartz cells) was employed to quantify AML, NIF, and NAR at wavelengths ranging from 200 to 400 nm, using

methanol as the solvent. The moieties' unique properties were their molar absorptivity, melting temperature, and solubility, which were their distinguishing characteristics. To establish the orthogonal partial least squares (OPLS) model, the process was carried out using the UV-Visible technique with software UV

Probe 2.34 and SIMCA (Sartorius, version 17, running on Windows 10 Pro). This methodology fulfilled the criteria established by the International Conference on Harmonisation (ICH) for analytical standards [34], including linearity, precision, and accuracy.

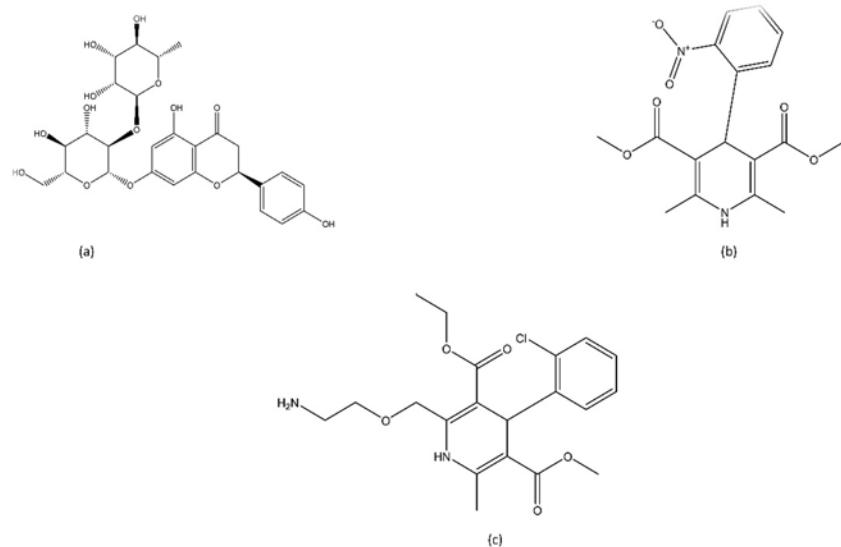


Figure 1: Structures of the different compounds, a) NAR, b) NIF, c) AML

PREPARATION OF STANDARD SOLUTION

After precisely weighing 10.0 mg of NAR and AML each, the stock solution was prepared by dissolving AML in 10.0 mL of methanol and adjusting the volume using the same solvent system. The stock solutions of AML and NAR were prepared at varying concentrations ranging from 5 to 20 μ g/mL. The zero-order spectra were obtained at wavelengths ranging from 200 to 400 nm, in comparison to a blank solution, and accurately weighed 10.0 mg of NAR and NIF, respectively. The stock solution was prepared by dissolving the NIF in 10 mL of methanol, followed by the addition of the necessary volume using the same solvent. NAR and NIF stock solutions were formulated with concentrations varying from 5 to 20 μ g/mL. The zero-order spectra were acquired at wavelengths between 200 and 400 nm relative to a blank solution

ONE COMPONENT CALIBRATION

The spectral absorption for the linear dynamic range (LDR) was measured at 200-400 nm by adding different concentrations of stock solutions to a 10.0 mL volumetric flask, using methanol to make up the volume. The absorbance vs. concentration graph analyzed the LDR, which was determined to be between 1 and 50 μ g/mL.

STANDARD CALIBRATION AND PREDICTION SAMPLES SET OF AML- NAR AND NIF- NAR

The method by Sonawane et al. [35] was further modified, where the NAR was combined with AML in several different proportions, corresponding to their linear concentration ranges, to create calibration and prediction mixes. A traditional factorial design with two factors and four levels each was used to determine the concentration of the calibration set. In contrast, a design with two factors and three levels each was used for the prediction set. Nine prediction mixes and sixteen calibration mixes were produced separately. The different sets, i.e., calibration (5-20 μ g/mL) and a prediction set of three-component combinations (2.5-15 μ g/mL), were created as shown in Table 1. A weighed amount of powder equivalent to 10.0 mg was added to a 10.0 mL volumetric flask for analysis. Methanol was used to dissolve the powder and bring the sample volume to 10.0 mL. 2.5 mL of the sample was pipetted out from the stock solution (10.0 mg/10.0 mL), which was then poured into a 25 mL volumetric flask. The sample was further analyzed at 200-400 nm at 1-nm intervals, compared to the blank methanol. The amount of methanol was subsequently modified to meet the AML-NAR and NIF-NAR standards of the calibration and prediction samples set. These sets were created

using the multilevel, multi-factor design. All these data were analysed in the UV Probe and imported to SIMCA 17 for data analysis. Further, a calibration model was constructed. Recovery and mean recovery calculations were also performed.

Table 1: Different concentrations of AML-NAR and NIF-NAR used as calibration and prediction sets in the OPLS method of analysis.

Sl no.	Calibration		Prediction		Calibration		Prediction	
	AML ($\mu\text{g/mL}$)	NAR	AML ($\mu\text{g/mL}$)	NAR ($\mu\text{g/mL}$)	NIF ($\mu\text{g/mL}$)	NAR ($\mu\text{g/mL}$)	NIF ($\mu\text{g/mL}$)	NAR ($\mu\text{g/mL}$)
1.	20	5	9	12.5	20	5	9	12.5
2.	1	10	15	12.5	1	10	15	12.5
3.	20	10	9	2.5	20	10	9	2.5
4.	20	20	15	2.5	20	20	15	2.5
5.	10	1	3	12.5	10	1	3	12.5
6.	10	5	9	7.5	10	5	9	7.5
7.	10	10	3	7.5	10	10	3	7.5
8.	5	10	15	7.5	5	10	15	7.5
9.	1	20	3	2.5	1	20	3	2.5
10.	20	1			20	1		
11.	5	20			5	20		
12.	5	1			5	1		
13.	1	1			1	1		
14.	10	20			10	20		
15.	1	5			1	5		
16.	5	5			5	5		

PRE-PROCESSING

A methodical preprocessing approach has been employed in this research to enhance the accuracy and reliability of the chemometric analysis. The analysis was recorded using UV-Vis spectroscopy over the range of 200-400 nm at an interval of 1 nm. A Shimadzu 1800 double-beam spectrophotometer was used, with methanol as the solvent system. The raw data set was then transferred into SIMCA (version 17). Firstly, the dataset was standardized using an automated scaling. Different filters, including Moving Average (MA), Norris Derivative (NA), Exponentially Weighted Moving Average (EWMA), and Savitsky-Golay (SG), were used. Still, they didn't result in removing the noise, as a result of which out of all the filters, the SG-EWMA (Savitsky-Golay Exponentially Weighted Moving Average) filter was applied, which excluded the spectrum overlap, particularly at the range of 207-332nm, which enhanced the model performance and signal quality. Furthermore, the dataset was evaluated for overfitting and processed for cross-validation to determine the model's robustness. Thus, the calibration and the prediction sets were developed. After

building the OPLS model (orthogonal projection to latent structure), statistical tests, including Hotelling's T2, DModx, Score, and permutation analysis, were performed to validate the results further. The high spectral resolution facilitated the obtaining of easier minute spectral variations, providing precise and reproducible analysis.

BUILDING AN OPLS MODEL

A multivariate calibration technique, formulated by Abdallah FF et al. [36] and Ríos-Reina et al. [37] using the OPLS method of analysis, was further modified by employing different filter derivatives to mitigate overlap among the pharmaceuticals under study. During preprocessing, the calibration set data were automatically scaled for use in the OPLS filter, primarily the Savitzky-Golay Exponentially Weighted Moving Average (SG-EWMA), where the concentration range was taken from 207 to 332 nm. The cross-validation procedure involved omitting samples and subsequently analysing the remaining data. The optimal quantity of the module is crucial for the OPLS methodology; excessive components introduce noise, while

insufficient components diminish it. The established model, developed through the OPLS method, helped characterize the

latent variables. A calibration plot is generated by juxtaposing the anticipated concentrations with the actual concentrations.

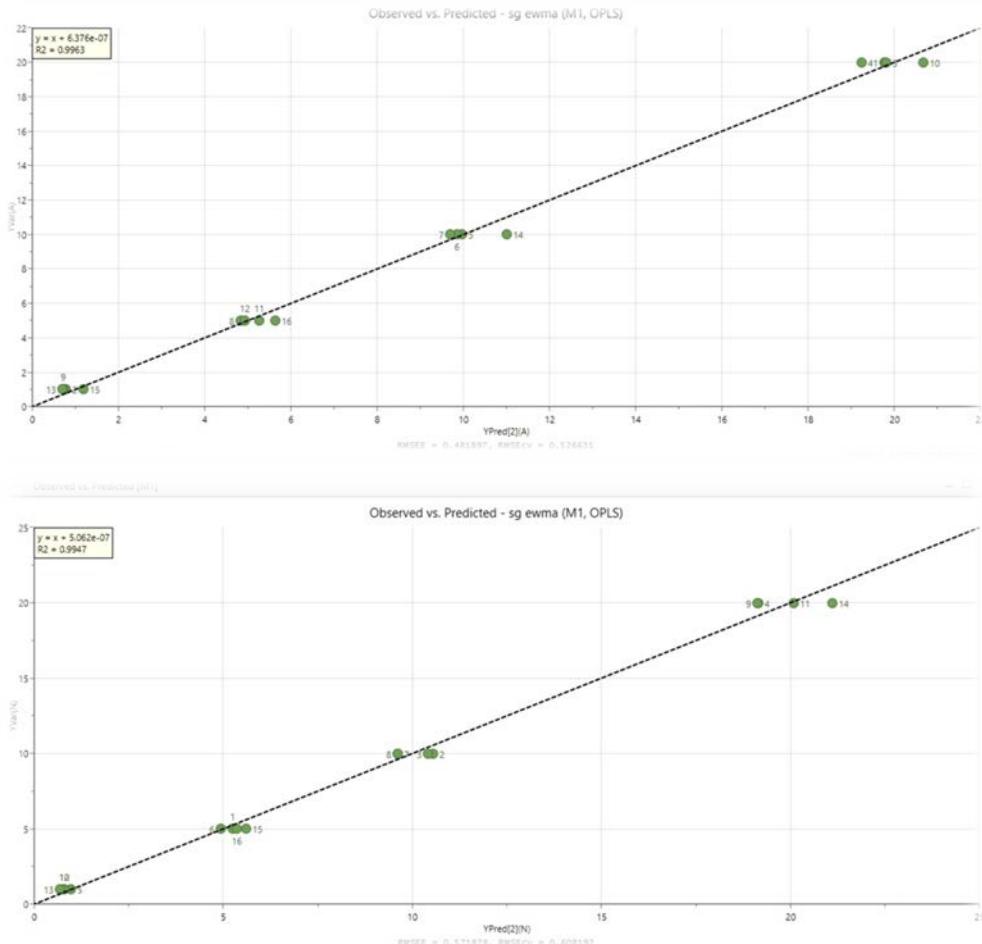


Figure 2: Observation Vs Prediction of AML and NAR using SG EWMA filters.

Note: OPLS models with SG-EWMA preprocessing are illustrated in the calibration figure, which helps clarify the correlation between the actual and predicted concentrations of AML and NAR. The predictive accuracy of the model is determined by its high degree of linearity ($R^2 > 0.99$) [38].

ASSAY OF SYNTHETIC MIXTURE OF AML-NAR AND NIF-NAR:

To prepare the synthetic mixture, a calibrated 10.0 mL volumetric flask was filled with AML-NAR in a 1:1 powder ratio, equivalent to 10.0 mg, for the analysis, which was then further dissolved in methanol. 2.5 mL was pipetted out of the prepared stock solution (10.0 mg/10.0 mL) and put into a 25 mL volumetric flask (100 µg/mL), which was then further diluted with methanol. From the prepared solution, further concentrations were formed and analysed. Similarly, the synthetic combination of NIF and NAR was also established.

MODEL VALIDATION

The weak, moderate outliers were all identified with the help of parameters like Hotelling's T^2 [39] test and DModX [40], which

would also confirm the lack of outliers. Hotelling's T^2 , a multivariate extension of the classical Student t-test, measured the distance of each observation from the model centre. In this study, all data for both the AML-NAR and NIF-NAR models fell within the 95% confidence ellipse, indicating that no significant outliers were present. DModX values were below the Critical limit, confirming that the samples fit well within the established model. Permutation analysis assesses the robustness and statistical significance of the model. The study revealed that all permuted Q^2 values were negative, whereas R^2 values were about 1 or lower, validating that the model was not overfitted and has real predictive power [38]. The score plot enables the observation of all samples located within Hotelling's range. The result of the two models, i.e., AML-NAR and NIF-NAR, was effective as each optimization approach satisfied the criteria.

The Score representation, DModx, permutation plot, and Hotelling's range are illustrated in the aforementioned figures for both the calibration and prediction sets. All experimental procedures, including calibration and prediction set

preparations, as well as all analytical measurements, were carried out in triplicate to ensure the reproducibility, reliability, and statistical robustness of the results determined through the chemometric validation procedure.

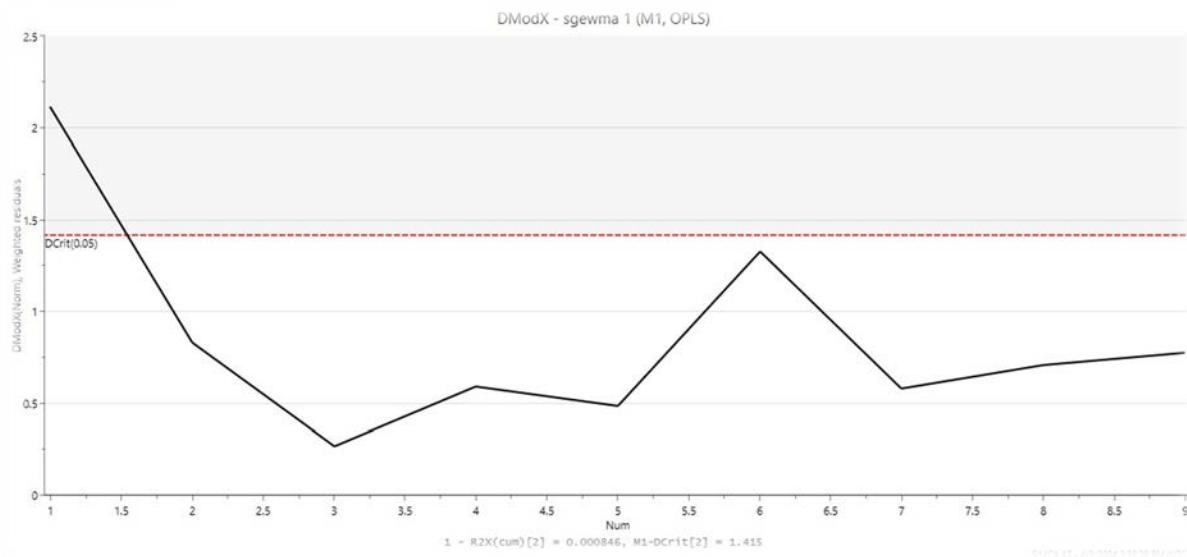


Figure 3: DModX plot for each observation in the OPLS model.

Note: DModX plot of the OPLS model determines how well the samples fit the model. There are no noticeably outlying values as the sample falls within the critical level of 0.05 [41].

STATISTICAL PARAMETERS

The model of regression can be characterized in various ways. To determine the RMSECV, RMSEP, and R^2 values, the OPLS technique was applied to the validation dataset corresponding to the specified combination. An acceptable range was identified for the mean percent recovery of the various medication combinations, as well as the validation of the calibration parameters. Standardized medications were incorporated into the exact amounts of a synthetic combination with a specified concentration for recovery trials. Standard working solutions of predetermined volumes were added. Once the sample volume or concentration for addition was specified. Methanol was subsequently introduced into the flask.

The recovery of the medications in the mixtures was evaluated using chemometric techniques. The root mean square deviation was also assessed using the OPLS technique. The results of the recovery research showed that the procedures were validated, as the recovery study achieved nearly 100% recovery, and the percentage root mean square deviation (RSD) was less than 2%. For both drugs in the prediction set, it can be concluded that OPLS, the optimized approach, is successful, proving its effectiveness and potent predictive power.

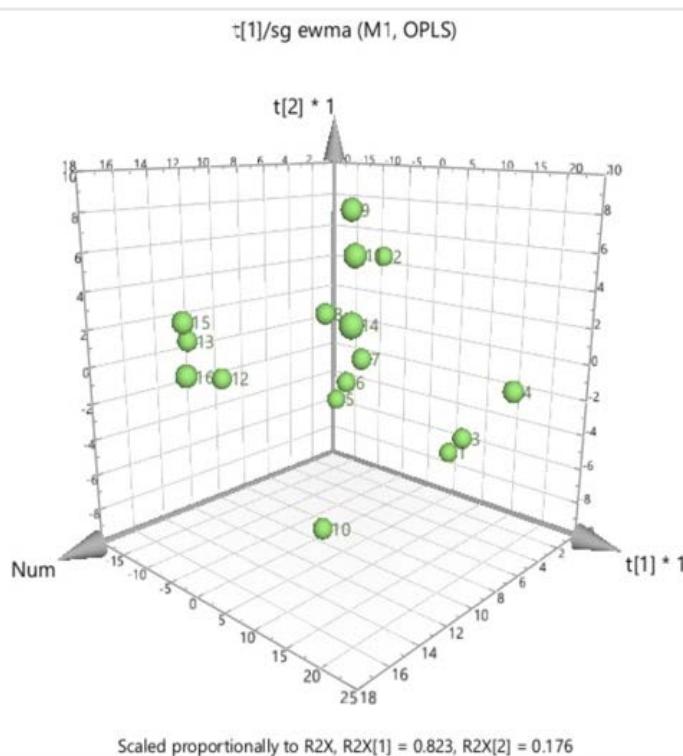


Figure 4: 3D score plot from OPLS analysis showing the distribution of 16 sample sets.

Note: A score plot evaluates the degree of separation between various sample classes and helps decipher the data's underlying structure [38].

RESULTS AND DISCUSSION

Table 2: Statistical parameters for the OPLS method for AML-NAR and NIF-NAR (Calibration and Prediction set).

SETS	DRUGS	R ²	RMSECV	RMSEE
Calibration	AML	0.9963	0.5266	0.4818
	NAR	0.9947	0.6081	0.5718
	NIF	0.9935	0.7034	0.6613
	NAR	0.9976	0.4051	0.5718
Prediction	AML	0.9978	0.3978	0.4083
	NAR	0.9982	0.4418	0.3929
	NIF	0.9974	0.6191	0.4872
	NAR	0.9985	0.4353	0.4199

Table 3: Representation of prediction outcomes from the OPLS model for NAR and AML in the Prediction datasets, along with the % recovery of the model.

AML			NAR		
Known concentration (µg/mL)	Predicted value	% recovery	Known concentration (µg/mL)	Predicted value	% recovery
20	19.7	98	5	5.2	104
20	19.2	96	20	19.1	95
10	9.9	99	1	0.9	95
10	9.6	96	10	9.6	96
1	0.9	97	20	19.1	95
20	19.9	99	1	0.9	91
5	4.9	98	1	0.9	95
1	0.9	99	5	5.0	100
5	4.5	91	5	5.2	104

The predicted values closely match the actual concentration, demonstrating the model's precision and accuracy.

Table 4: Analytical parameters (LOD, LOQ, SD, SE) for NAR, NIF and AML

	NAR	NIF	AML
Standard Error	0.003	0.002	0.004
Standard Deviation	0.007	0.006	0.011
LOD (µg/mL)	2.092	1.753	1.861
LOQ (µg/mL)	6.338	5.312	5.639

The current study demonstrates the effectiveness of OPLS chemometric-assisted UV-visible spectrophotometry in simultaneously determining Naringin-Amlodipine and

Naringin-Nifedipine in synthetic mixtures. This chemometric method effectively addresses the challenges posed by traditional univariate spectrophotometric techniques [42], such as spectral overlap, which significantly enhances the accuracy of quantifying multiple components in a single analysis. It also improves sensitivity to experimental conditions, selectivity, and detection limits [43] [44] [45]. Calibration and prediction set design were a critical aspect of this analysis. As shown in Table 1, a comprehensive range of concentrations for both AML-NAR and NIF-NAR combinations was systematically selected, ensuring coverage across the linear dynamic range (5-20 µg/mL for calibration and 2.5-15 µg/mL for the prediction set). The present work was optimized using Savitzky-Golay and EWMA filters, which helped to resolve the issue of overlapping and enabled an accurate unfolding of each analyte's contributions. We validated the OPLS models using statistical measures, including R² (the coefficient of determination), RMSECV (Root Mean Square Error of Cross-Validation), and RMSEE (Root Mean Square Error of Estimation), for both calibration and prediction sets. The impressive R² values of over 0.99 for both the calibration and prediction sets demonstrate the model's strength. In contrast, the low RMSECV and RMSEE values, both below 0.99, indicate that errors are minimal and the predictive power is substantial. The lower values of RMSECV suggested that the model was not overfitted and was capable of accurately predicting new, unseen samples. Additionally, validation parameters like Hotelling's T² test and DModX analysis were used to confirm that no significant outliers were skewing the model's performance, as all data points fell within the 95% confidence ellipse and below the critical DModX limits [46]. Permutation analysis further supported the model's reliability, revealing that the fitting wasn't just a fluke, as all permuted Q² values were negative and R² values stayed close to 1. The recovery studies, which produced results of 100%, further validated the model's accuracy and precision. The average recovery percentages and percentage root mean square deviation (RSD < 2%) [47] fell well within the acceptable analytical range, making this method a novel fit for pharmaceutical applications. This method showed a consistent linear response across the AML-NAR and NIF-NAR concentration ranges of 5-20 (µg/mL) with correlation values ranging from 0.9947-0.9963 and 0.9935-0.9976, respectively. Higher linearity indicated that the model could generalize across various sample compositions and concentration ranges, making it a robust one. With mean recoveries of 98.7% for AML and 99.2% for NIF in synthetic

combination, recovery investigations confirmed the approach. All the parameter results were within the range of ICH guidelines, which benefits the present OPLS approach for reducing noise, managing interferences, and enhancing exploratory data analysis, particularly for complex pharmaceutical mixtures. When compared to traditional spectrophotometric methods [48], this approach significantly lessens interference effects and boosts the reliability of simultaneous drug quantification. However, the limit of detection (LOD) and Limit of quantitation (LOQ) values were relatively high; as such, the application of the particular method was limited to pharmaceutical formulation and its utility on biological matrices.

CONCLUSION

In searching for weak and moderate outliers, Hotelling's T^2 test and DModX encountered no deviance, suggesting that no outliers were detected (24). All of the permuted Q^2 values were less than 0, and R^2 values were less than or equal to 1, as shown by the permutation analysis. The model fitting was probably correct, as Q^2 and R^2 [49] were less than the initial values. Looking at the score plot, we can observe all the samples that are inside Hotelling's range.

This leads us to believe that the model is effective, as all optimization strategies meet the specified criteria. At long last, we may make educated guesses on the repeatability of the approaches based on the outcomes of several evaluations. There was no deviation from the ICH standards in any of the above analyses. The cost-effectiveness, multicomponent analysis, and the removal of interface overlap in the overlapping UV spectra for NAR, AML, and NIF were all considered significant advantages of the OPLS method, which allows for the precise determination of all three compounds. This method provided adequate sensitivity in the 5-20 ($\mu\text{g/mL}$) range, which is ideal for pharmaceutical manufacturing quality control.

Lastly, it should be noted that although the techniques achieved excellent results in pharmaceutical formulations, they have a restricted application in biological matrices, such as plasma, due to relatively high LOD and LOQ values, which could likely arise from increased matrix complexity or spectral interferences in the biological samples. Subsequent work on lowering these limits may improve the capability of accurately measuring the compounds of interest in biological specimens.

ACKNOWLEDGMENT

The authors would like to express their gratitude to Dr. Souvik Chakraborty for his valuable insights for this work.

FINANCIAL ASSISTANCE

NIL

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTION

Vishala Rani Baraily contributed to the development of the technique, execution of the experimental data, writing of the original draft, and data analysis. Jithendar Reddy Mandhadi supervised the research, provided critical insights, and contributed to manuscript writing and revisions. Bhupendra Shrestha contributed to experimental work, data interpretation, manuscript preparation, and revisions. All the authors have read and approved the final manuscript.

LIST OF ABBREVIATIONS

AML: Amlodipine, NIF: Nifedipine, NAR: Naringin, OPLS: Orthogonal Partial Least Squares, RMSEP: Root mean square error of prediction, RMSECV: Root mean square error of Cross-validation, RMSEE: Root mean square error, ICH: International Council for Harmonization, RSD: Root mean square deviation, UV: Ultra-Violet, LDR: Linear dynamic range, LOD: Limit of detection, LOQ: Limit of quantification

REFERENCES

- [1] Héberger K. Chemoinformatics—multivariate mathematical–statistical methods for data evaluation. *Medical Applications of Mass Spectrometry*. Elsevier, pp. 141–69 (2008) <https://doi.org/10.1016/B978-044451980-1.50009-4>
- [2] Abraham EJ, Kellogg JJ. Chemometric-Guided Approaches for Profiling and Authenticating Botanical Materials. *Front. Nutr.*, **8**, 780228 (2021) <https://doi.org/10.3389/fnut.2021.780228>.
- [3] Popovic A, Morelato M, Roux C, Beavis A. Review of the most common chemometric techniques in illicit drug profiling. *Forensic Science International*, **302**, 109911 (2019) <https://doi.org/10.1016/j.forsciint.2019.109911>
- [4] Brown SD, Blank TB, Sum ST, Weyer LG. Chemometrics. *Anal. Chem.*, **66**, 315–59 (1994) <https://doi.org/10.1021/ac00084a014>
- [5] Biancolillo A, Marini F. Chemometric Methods for Spectroscopy-Based Pharmaceutical Analysis. *Front. Chem.*, **6**, 576 (2018) <https://doi.org/10.3389/fchem.2018.00576>.

[6] Abdelazim AH, Shahin M. Different chemometric assisted approaches for spectrophotometric quantitative analysis of lesinurad and allopurinol. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **251**, 119421 (2021) <https://doi.org/10.1016/j.saa.2020.119421>.

[7] Nurani LH, Edityaningrum CA, Irnawati I, Putri AR, Windarsih A, Guntarti A, Rohman A. Chemometrics-Assisted UV-Vis Spectrophotometry for Quality Control of Pharmaceuticals: A Review. *Indonesian Journal of Chemistry*, **23**, 542–67 (2023) <https://doi.org/10.22146/ijc.74329>.

[8] Coelho EM, Da Silva Haas IC, De Azevedo LC, Bastos DC, Fedrigo IMT, Dos Santos Lima M, De Mello Castanho Amboni RD. Multivariate chemometric analysis for the evaluation of 22 Citrus fruits growing in Brazil's semi-arid region. *Journal of Food Composition and Analysis*, **101**, 103964 (2021) <https://doi.org/10.1016/j.jfca.2021.103964>.

[9] Zulkifli B, Fakri F, Odigie J, Nnabuife L, Isitua CC, Chiari W. Chemometric-empowered spectroscopic techniques in pharmaceutical fields: A bibliometric analysis and updated review. *Narra X*, **1**, (2023) <https://doi.org/10.52225/narrax.v1i1.80>.

[10] Mostafa A, Shaaban H. Chemometric Assisted UV-Spectrophotometric Methods Using Multivariate Curve Resolution Alternating Least Squares and Partial Least Squares Regression for Determination of Beta-Antagonists in Formulated Products: Evaluation of the Ecological Impact. *Molecules*, **28**, 328 (2023) <https://doi.org/10.3390/molecules28010328>.

[11] Zeid AM, Abdelazim AH, Shahin M. Simultaneous spectrophotometric quantitative analysis of elbasvir and grazoprevir using assisted chemometric models. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **252**, 119505 (2021) <https://doi.org/10.1016/j.saa.2021.119505>.

[12] Boccard J, Rutledge DN. A consensus orthogonal partial least squares discriminant analysis (OPLS-DA) strategy for multiblock Omics data fusion. *Analytica Chimica Acta*, **769**, 30–9 (2013) <https://doi.org/10.1016/j.aca.2013.01.022>.

[13] Abdelazim AH, Shahin M, Abu-khadra AS. Application of different chemometric assisted models for spectrophotometric quantitative analysis of velpatasvir and sofosbuvir. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **252**, 119540 (2021) <https://doi.org/10.1016/j.saa.2021.119540>.

[14] Bylesjö M, Eriksson D, Sjödin A, Jansson S, Moritz T, Trygg J. Orthogonal projections to latent structures as a strategy for microarray data normalization. *BMC Bioinformatics*, **8**, 207 (2007) <https://doi.org/10.1186/1471-2105-8-207>.

[15] Gabrielsson J, Jonsson H, Airiau C, Schmidt B, Escott R, Trygg J. OPLS methodology for analysis of pre-processing effects on spectroscopic data. *Chemometrics and Intelligent Laboratory* *Systems*, **84**, 153–8 (2006) <https://doi.org/10.1016/j.chemolab.2006.03.013>.

[16] Forsgren E, Björkblom B, Trygg J, Jonsson P. OPLS-Based Multiclass Classification and Data-Driven Interclass Relationship Discovery. *J. Chem. Inf. Model.*, **65**, 1762–70 (2025) <https://doi.org/10.1021/acs.jcim.4c01799>.

[17] Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. *Journal of Chemometrics*, **20**, 341–51 (2006) <https://doi.org/10.1002/cem.1006>.

[18] Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). *Journal of Chemometrics*, **16**, 119–28 (2002) <https://doi.org/10.1002/cem.695>.

[19] Silva LCRC e, David JM, Borges R dos SQ, Ferreira SLC, David JP, Reis PS dos, Bruns RE. Determination of Flavanones in Orange Juices Obtained from Different Sources by HPLC/DAD. *Journal of Analytical Methods in Chemistry*, **2014**, 296838 (2014) <https://doi.org/10.1155/2014/296838>.

[20] Ribeiro IA, Ribeiro MHL. Naringin and naringenin determination and control in grapefruit juice by a validated HPLC method. *Food Control*, **19**, 432–8 (2008) <https://doi.org/10.1016/j.foodcont.2007.05.007>.

[21] Jung UJ, Kim SR. Effects of naringin, a flavanone glycoside in grapefruits and citrus fruits, on the nigrostriatal dopaminergic projection in the adult brain. *Neural Regeneration Research*, **9**, 1514 (2014) <https://doi.org/10.4103/1673-5374.139476>.

[22] EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion on the safety and efficacy of naringin when used as a sensory additive for all animal species. *EFSA Journal*, **9**, 2416 (2011) <https://doi.org/10.2903/j.efsa.2011.2416>.

[23] Gunes A, and Dahl M-L. Variation in CYP1A2 Activity and its Clinical Implications: Influence of Environmental Factors and Genetic Polymorphisms. *Pharmacogenomics*, **9**, 625–37 (2008) <https://doi.org/10.2217/14622416.9.5.625>.

[24] Van Geijn HP, Lenglet JE, Bolte AC. Nifedipine trials: effectiveness and safety aspects. *BJOG*, **112**, 79–83 (2005) <https://doi.org/10.1111/j.1471-0528.2005.00591.x>.

[25] Freedman DD, Waters DD. ‘Second Generation’ Dihydropyridine Calcium Antagonists. *Drugs*, **34**, 578–98 (1987) <https://doi.org/10.2165/00003495-198734050-00005>.

[26] Curtis TM, Scholfield CN. Nifedipine blocks Ca²⁺ store refilling through a pathway not involving L-type Ca²⁺ channels in rabbit arteriolar smooth muscle. *J Physiol*, **532**, 609–23 (2001) <https://doi.org/10.1111/j.1469-7793.2001.06096.x>.

[27] Kaya H, Polat B, Albayrak A, Mercantepe T, Buyuk B. Protective effect of an L-type calcium channel blocker, amlodipine, on paracetamol-induced hepatotoxicity in rats. *Hum Exp Toxicol*, **37**, 1169–79 (2018) <https://doi.org/10.1177/0960327118758382>.

[28] Höcht C, Bertera ,Facundo M., Santander Plantamura ,Yanina, Parola ,Luciano, Del Mauro ,Julieta S., and Polizio AH. Factors influencing hepatic metabolism of antihypertensive drugs: impact on clinical response. *Expert Opinion on Drug Metabolism & Toxicology*, **15**, 1–13 (2019) <https://doi.org/10.1080/17425255.2019.1558204>.

[29] Zhang Y-P, Zuo X-C, Huang Z-J, Cai J-J, Wen J, Duan DD, Yuan H. CYP3A5 polymorphism, amlodipine and hypertension. *J Hum Hypertens*, **28**, 145–9 (2014) <https://doi.org/10.1038/jhh.2013.67>.

[30] Guo Y, Lucksiri A, Dickinson GL, Vuppalanchi RK, Hilligoss JK, Hall SD. Quantitative Prediction of CYP3A4- and CYP3A5-Mediated Drug Interactions. *Clin Pharma and Therapeutics*, **107**, 246–56 (2020) <https://doi.org/10.1002/cpt.1596>.

[31] Zhu Y, Wang F, Li Q, Zhu M, Du A, Tang W, Chen W. Amlodipine Metabolism in Human Liver Microsomes and Roles of CYP3A4/5 in the Dihydropyridine Dehydrogenation. *Drug Metab Dispos*, **42**, 245–9 (2014) <https://doi.org/10.1124/dmd.113.055400>.

[32] Yeum C-H, Choi J-S. Effect of naringin pretreatment on bioavailability of verapamil in rabbits. *Arch Pharm Res*, **29**, 102–7 (2006) <https://doi.org/10.1007/BF02977476>.

[33] Choi J-S, Li X. Enhanced diltiazem bioavailability after oral administration of diltiazem with quercetin to rabbits. *International Journal of Pharmaceutics*, **297**, 1–8 (2005) <https://doi.org/10.1016/j.ijpharm.2004.12.004>.

[34] Branch SK. Guidelines from the International Conference on Harmonisation (ICH). *Journal of Pharmaceutical and Biomedical Analysis*, **38**, 798–805 (2005) <https://doi.org/10.1016/j.jpba.2005.02.037>.

[35] Sonawane SS, Chhajed SS, Attar SS, Kshirsager SJ. An approach to select linear regression model in bioanalytical method validation. *J Anal Sci Technol*, **10**, 1 (2019) <https://doi.org/10.1186/s40543-018-0160-2>.

[36] Abdallah FF, Darwish HW, Darwish IA, Naguib IA. Orthogonal projection to latent structures and first derivative for manipulation of PLSR and SVR chemometric models' prediction: A case study. *PLoS ONE*, **14**, e0222197 (2019) <https://doi.org/10.1371/journal.pone.0222197>.

[37] Ríos-Reina R, Azcarate SM. How Chemometrics Revives the UV-Vis Spectroscopy Applications as an Analytical Sensor for Spectralprint (Nontargeted) Analysis. *Chemosensors*, **11**, 8 (2023) <https://doi.org/10.3390/chemosensors11010008>.

[38] Sharma S, Shrestha B, Bhuyan NR, Majumdar S, Chowdhury S, Mazumder R. Chemometric method development for the determination of naringin and verapamil. *Bull Natl Res Cent*, **48**, 13 (2024) <https://doi.org/10.1186/s42269-024-01169-3>.

[39] Khatib S, Daoutidis P. Multiple Hotelling's T2 tests for distributed fault detection of large-scale systems. *Computers & Chemical Engineering*, **136**, 106807 (2020) <https://doi.org/10.1016/j.compchemeng.2020.106807>.

[40] Li Z, Yu Y, Pan X, Karim MN. Effect of dataset size on modeling and monitoring of chemical processes. *Chemical Engineering Science*, **227**, 115928 (2020) <https://doi.org/10.1016/j.ces.2020.115928>.

[41] Eriksson L, Trygg J, Wold S. CV-ANOVA for significance testing of PLS and OPLS® models. *Journal of Chemometrics*, **22**, 594–600 (2008) <https://doi.org/10.1002/cem.1187>.

[42] Bagherian G, Salehi Mobarake F, Arab Chamjangali M, Ashrafi M, Borzooei H. Comparison between univariate and multivariate calibration methods for simultaneous spectrophotometric determination of catechol and hydroquinone in their binary mixture. *Frontiers in Chemical Research*, **2**, 1–9 (2020) <https://doi.org/10.22034/fcr.2020.116897.1011>.

[43] Lotfy HM, Saleh SS, Hassan NY, Elgizawy SM. A Comparative Study of the Novel Ratio Difference Method versus Conventional Spectrophotometric Techniques for the Analysis of Binary Mixture with Overlapped Spectra. *American Journal of Analytical Chemistry*, **3**, 761–9 (2012) <https://doi.org/10.4236/ajac.2012.311101>.

[44] Lotfy HM, Hegazy MA, Rezk MR, Omran YR. Comparative study of novel versus conventional two-wavelength spectrophotometric methods for analysis of spectrally overlapping binary mixture. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **148**, 328–37 (2015) <https://doi.org/10.1016/j.saa.2015.04.004>.

[45] Pierce KM, Kehimkar B, Marney LC, Hoggard JC, Synovec RE. Review of chemometric analysis techniques for comprehensive two dimensional separations data. *Journal of Chromatography A*, **1255**, 3–11 (2012) <https://doi.org/10.1016/j.chroma.2012.05.050>.

[46] Darwish HW, Backit AH. Multivariate Versus Classical Univariate Calibration Methods for Spectrofluorimetric Data: Application to Simultaneous Determination of Olmesartan Medoxamil and Amlodipine Besylate in their Combined Dosage Form. *J Fluoresc*, **23**, 79–91 (2013) <https://doi.org/10.1007/s10895-012-1119-0>.

[47] Faber N (Klaas) M. Estimating the uncertainty in estimates of root mean square error of prediction: application to determining the size of an adequate test set in multivariate calibration. *Chemometrics and Intelligent Laboratory Systems*, **49**, 79–89 (1999) [https://doi.org/10.1016/S0169-7439\(99\)00027-1](https://doi.org/10.1016/S0169-7439(99)00027-1).

[48] Kościelniak P, Wieczorek M. Univariate analytical calibration methods and procedures. A review. *Analytica Chimica Acta*, **944**, 14–28 (2016) <https://doi.org/10.1016/j.aca.2016.09.024>.

[49] Roy PP, Roy K. On Some Aspects of Variable Selection for Partial Least Squares Regression Models. *QSAR Comb. Sci.*, **27**, 302–13 (2008) <https://doi.org/10.1002/qsar.200710043>.